Если первоначальные изменения (колебания) электрических и магнитных сил повторялись с определённым периодом, то и изменения электрических и магнитных сил в окружающем пространстве будут происходить также с определённым периодом. В пространстве образуется «электромагнитная волна». Она распространяется, как показали расчёты Максвелла, с громадной скоростью — 300000 километров в секунду. Эта скорость равна скорости распространения света.

Такая скорость удивительно велика. От Москвы до Ленинграда волна проходит только за одну пятисотую долю секунды! Расстояние от Земли до Луны электромагнитная волна проходит в 114, секунды, а от Земли до Солнца — около 8 минут.

Так как электрические и магнитные силы могут существовать в воздухе и даже в безвоздушном пространстве, то никаких проволок для передачи электромагнитных волн на расстояние не требуется.

В 1887 г. работавший в Германии физик Генрих Герц (потомки которого были изгнаны Гитлером из Германии за своё не чисто немецкое происхождение) научился получать электромагнитные волны и наблюдать их в окружающем пространстве на расстоянии нескольких метров от их источника — от проволоки.

Так как электромагнитные волны не действуют на наши органы чувств, то для обнаружения их приходилось пользоваться специальными приборами. Период колебаний этих волн был поразительно мал: он составлял всего лишь стомиллионные доли секунды (следовательно, длина волны измерялась десятками сантиметров).

4. ПЕРВАЯ РАДИОГРАММА

52 года назад, 7 мая 1895 г. русский учёный Александр Степанович Попов впервые показал на научном заседании в Петербурге (теперь Ленинграде) свой замечательный прибор, который отмечал на расстоянии до 40 километров электромагнитные волны, создаваемые в воздухе электрическими грозовыми разрядами — молнией. Этот прибор (рис. 6) был первым приёмником электромагнитных волн, или, как их теперь чаще называют, радиоволн. Попов назвал его грозоотметчиком.

Показывая учёным свой грозоотметчик, Попов сказал: «Если удастся изобрести достаточно мощные источники электромагнитных волн, то станет возможна связь без каких бы то ни было проводов на значительных расстояниях».

И уже меньше чем через год, 24 марта 1896 г. Попов вместе со своим помощником, ныне здравствующим П. Н. Рыбкиным, передал первую в мире радиограмму. Источник волн, т. е. передатчик, был расположен в 200 метрах от усовершенствованного грозоотметчика — приёмника. Рыбкин вёл передачу, а Галопов вместе с крупнейшими русскими учёными следил за тем, как обычный телеграфный аппарат, присоединённый к грозоотметчику, букву за буквой записывал слова первой радиограммы: «Генрих Герц».

Радио на службе у человека i_008.png
Рис. 6. Грозоотметчик Попова.

После этого Попов начал добиваться увеличения дальности действия своего «беспроволочного телеграфа», в настоящее время называемого радиотелеграфом. Спустя четыре года, в 1899 г., в военно — морском флоте России уже действовал радиотелеграф, который позволял поддерживать связь на расстояниях до 30 километров.

«Радио» означает по-русски «луч». Так как радиопередатчик «излучает» в пространство волны, то беспроволочную телеграфию и назвали «радиотелеграфией», т. е. телеграфией при помощи излучения. Постепенно это слово вошло в обиход и потеряло своё окончание, люди стали говорить просто «радио».

III. КАК ПЕРЕДАЮТСЯ И ПРИНИМАЮТСЯ РАДИОВОЛНЫ

1. ВОЗБУДИТЕЛЬ РАДИОВОЛН

Для телеграфирования без проводов нужно осуществить следующие основные операции:

1. Создать электромагнитные колебания.

2. Послать возбуждаемую этими колебаниями электромагнитную волну в пространство, т. е. послать сигнал.

3. Произвести приём сигнала.

Рассмотрим эти операции поочерёдно.

Подобно тому, как для создания звуковых волн в воз — духе применяют тела, способные совершать колебания (камертон, струна) и отдающие (излучающие) в воздух часть своей энергии в виде звуковых волн, в радиотехнике для возбуждения электромагнитных волн в пространстве применяют так называемый «электрический колебательный контур». Он состоит из проволочной катушки и конденсатора. Если по катушке пропускать электрический ток, то внутри неё создаются значительные магнитные силы. Конденсатор (рис. 7) представляет собой две металлические пластины, разделённые каким-либо непроводником, например, воздухом или слюдой. В пространстве между этими пластинами могут возникать большие электрические силы.

Вспомните, как возникают звуковые колебания. Если вы ударите камертон о что-либо твёрдое, то его ножки придут в движение. Это движение состоит в том, что ножки камертона изгибаются; благодаря этому возникают силы, стремящиеся вернуть ножки камертона обратно. Когда силы станут наибольшими, ножки на мгновение останавливаются, а затем движутся к своему обычному положению, постепенно набирая скорость. Как только ножки приходят в обычное положение, изгиб исчезает; перестают действовать и силы, возвращавшие ножки обратно. Но ножки камертона не останавливаются, так как всякое движущееся тело не может само по себе остановиться. Они проскакивают через нормальное положение снова, изгибаясь при этом, но в обратную сторону; благодаря изгибу снова возникают силы, тормозящие движение ножек, и всё описанное явление возобновляется. Понятно, что уследить глазами за движением ножек камертона трудно, так как он колеблется очень быстро.

Движение ножек камертона происходит, повторяясь через равные промежутки времени, но довольно быстро прекращается благодаря отдаче звука в окружающее пространство. Чтобы долгое время поддерживать это движение, нужно давать камертону толчки со стороны.

Радио на службе у человека i_009.png
Рис. 7. Конденсатор колебательного контура.

Для создания электромагнитных колебаний, как уже было сказано, применяют электрический колебательный контур (рис. 8,а). Контур также можно «подтолкнуть», если послать на конденсатор электрические заряды (рис. 8,б). В этом случае на нижней металлической пластине конденсатора создаётся избыток электронов. Избыток этот будет стремиться равномерно распределиться между обеими пластинами — к верхней пластине двинется поток электронов. Но, не имея возможности двигаться в воздухе, отделяющем пластины друг от друга, так как воздух — непроводник, они придут в движение по проволокам и катушке. Возникает ток. Электрический ток создаст магнитные силы (это показано на рис. 8,в). Через очень короткое время избыточные заряды на конденсаторе исчезнут, но движение зарядов в катушке будет продолжаться (подобно тому, как ножка камертона не останавливается в положении равновесия, а проскакивает через него). Постепенно и магнитные силы, и ток ослабевают, так как на верхней пластине конденсатора скопляются заряды, препятствующие дальнейшему течению тока (срав — ните с силами изгиба, постепенно останавливающими ножку камертона). В конце концов ток и магнитные силы исчезают, а конденсатор вновь оказывается заряженным (рис. 8,г). Но теперь избыток электронов имеется уже не на нижней, а на верхней пластине. Затем конденсатор снова начинает разряжаться, но теперь ток уже идёт в обратном направлении (рис. 8, д). Снова произойдёт перезарядка конденсатора, и этот процесс будет размеренно повторяться. Но так как катушка сделана из проволоки, а ток, текущий по проволоке, нагревает её, то при описанных электрических колебаниях будет выделяться тепло; благодаря этому колебания будут ослабевать и вскоре прекратятся совсем.


Перейти на страницу:
Изменить размер шрифта: