Определитель минералов img_23.png

Определитель минералов img_24.png

Рис. 5.

Нижеследующее сопоставление иллюстрирует три ныне еще употребительные системы обозначений (символов) классов симметрии.

Пример: С 4h — 4/m — тетраго–нально–бипирамидальный. C4h — это символ по Шенфлису, 4/m — по Герману — Могену. Последнее обозначение исходит из обобщенной кристаллографической формы и ведет свое начало от Грота. Система обозначений по Герману — Могену (интернациональная символика) получает все более широкое распространение. 32 класса симметрии распределяются по шести кристаллографическим сингониям, которые вследствие своей малочисленности и более легкой распознаваемости являются, конечно, более наглядными. А сами сингонии выводятся из общих законов симметрии.

Что понимают под сингонией? Она выводится из мысленно помещенной внутри кристалла системы координатных кристаллографических осей, причем соотношение длин отрезков по осям и величина углов между ними строго определенные для каждой сингонии. Установка системы кристаллографических осей всегда производится таким образом, что к наблюдателю обращена ось а, направо располагается ось b, а вверх направлена ось с. Между осями а и b заключен угол у, между осями а и с — угол |3, а между осями b и с — угол а (рис. 5).

Каждая сингония охватывает несколько классов симметрии (см. сопоставление в табл.2). Сравнительный обзор показывает, что каждый класс легко подчинить соответствующей сингонии, поскольку каждая сингония характеризуется определенным набором элементов симметрии. В триклинной сингонии может присутствовать в качестве элемента симметрии только 1 — ось идентичности (вращение на 360°) или 1 как нульмерный элемент симметрии. В моноклинной сингонии существует три класса симметрии, характеризующиеся наличием двойной оси симметрии, плоскости симметрии или комбинацией обоих элементов. При сочетании трех двойных осей или плоскостей симметрии возникает ромбическая сингония. Четверная ось симметрии характеризует тетрагональную, шестерная — гексагональную и тройная — тригональную сингонию. Последняя рассматривается как подсистема гексагональной. Кубическая сингония определяется присутствием тройных осей симметрии, которые, однако, в отличие от тригональной сингонии во всех классах кубической сингонии в обозначениях ставятся на второе место.

Примеры: 432 — кубическая, 422 — тетрагональная, или 23 — кубическая, 32 — тригональная.

Следует, однако, показать яснее, что кристаллографические сингонии определяются непосредственно симметрией кристаллов. Наличие тетрагональной оси симметрии предопределяет условие а=b, угол между этими осями равен 90°. Ведь если вращение на 90° должно привести к идентичной картине, необходимо, чтобы отрезки по обеим осям были одинаковы. Аналогичные соотношения имеют место в гексагональной сингонии. В кубической сингонии соответственно три двойные или четверные оси симметрии связаны с четырьмя тройными осями, располагающимися вдоль пространственных диагоналей куба; обе системы осей пересекаются под характеристическим углом 54°44′.

Следует поставить важный вопрос, обсуждение которого еще более прояснит соотношения между сингонией, классом симметрии и элементом симметрии. Расположены ли элементы симметрии в кристалле произвольно или и здесь выявляются закономерные соответствия? Оказывается, что элементы симметрии тесно связаны с кристаллографическими осями. Для отдельных сингонии установлены следующие главные направления (параллельные лучу зрения):

Сингония Главные направления
Триклинная Отсутствуют
Моноклинная Ось b
Ромбическая Ось а, ось b, ось с
Тетрагональная Гексагональная (Тригональная) Ось с, оси а, биссектриса угла между осями а
Кубическая Оси а, пространственные диагонали куба, диагонали граней куба

Главными направлениями в кристалле называются направления, в которых располагаются элементы симметрии. Отсюда следует, что элементы симметрии могут находиться только в строго определенных направлениях.

В триклинной сингонии главное направление не установлено, поскольку придавать направление оси идентичности 1 или 1, т. е. точке, было бы бессмысленно. В моноклинной сингонии достаточно одного направления и для класса 2/m, поскольку эта комбинация оси и плоскости располагается в кристалле таким образом, что нормаль (перпендикуляр) к двойной оси ориентирована параллельно плоскости симметрии. Для других сингонии необходимо указывать три главных направления, хотя в кристаллах этих сингонии может присутствовать большое количество направлений, но два или даже три из них являются равноценными (например, в тетрагональной сингонии а=b или в кубической а = b = с), так что указание одного из таких направлений включает в себя и остальные, ему адекватные.

Поскольку каждый класс симметрии подчиняется какой–либо одной сингонии, с помощью главных направлений определяется положение элементов симметрии в пространстве. Само собой разумеется, что существует и обратная связь, в соответствии с которой кристаллографическим осям отвечают определенные элементы симметрии. Примеры:

Класс симметрии Сингония Положение элементов симметрии
2/m Моноклинная 2||b m_|_b
2/m 2/m 2/m Ромбическая 2||а 2||b 2||с
4/m 2/m 2/m Тетрагональная т _|_a m_|_ b m_|_ с 4 || с 2 || а, b 2 || биссектрисам углов между осями а m_|_c т_|_a, b m_|_ биссектрисам углов между осями а
6 Гексагональная 6||с
432 Кубическая 4||а, b, с 3 || четырем пространственным диагоналям куба 2 || шести диагоналям граней куба

|| —параллельно

_|_ — перпендикулярно

Пример класса 6 показывает, что не в каждом классе симметрии все главные направления соответствующей сиигонии сопровождаются элементами симметрии.

Внешнюю огранку кристаллов составляют грани, ребра и углы, которые связаны между собой соотношением Эйлера: число граней+число углов=число ребер +2.

Подобно элементам симметрии следует привести также грани и ребра кристаллов в соответствие с кристаллографическими осями и тем самым с элементами симметрии.

Легко представить, что каждая грань, рассматриваемая в пространстве, заключенном в систему координатных осей, должна отсекать, пересекать одну, две или три оси. Различают ряд положений граней, представленных на рис. 6.

Ребра кристаллов также обозначаются тройным индексом: ось а и все параллельные ей ребра имеют индекс [100], ось b — [010] и ось с — [001].


Перейти на страницу:
Изменить размер шрифта: