Однако (по предположению) меньшая посылка (S—М) тоже отрицательная. Так как, согласно общим правилам силлогизма, отрицательной может быть только одна посылка, то заключение об отрицательности большей посылки — ложно.
Обнаружившаяся ложность заключения может быть обусловлена либо логической ошибкой в выводе, либо ложностью оснований. Однако в данном случае вывод сделан правильно. С другой стороны, все основания, кроме предположения об отрицательности меньшей посылки, представляют собой заведомо истинные и строго доказанные логические правила теории суждения и силлогизма. Отсюда следует, что сделанное вначале предположение об отрицательности меньшей посылки — ложно. А так как ложное предположение об отрицательности меньшей посылки противоречит положению о её положительности, то, согласно закону исключённого третьего, из доказанной ложности предположения об отрицательности меньшей посылки необходимо следует её утвердительность.
Опровержения, так же как и простые доказательства истинности тезиса, могут быть как прямыми, так и косвенными.
Условием прямого опровержения является доказательство истинности положения, противоположного опровергаемому тезису. Из истинности положения, противоположного опровергаемому тезису, на основании закона противоречия следует ложность самого опровергаемого тезиса. При этом истинное положение, противопоставляемое опровергаемому, может быть как противоречащим, так и противным. И действительно: заключение от истинности противопоставляемого положения к ложности опровергаемого делается на основании закона противоречия, который относится не только к противоречащим, но и к противным суждениям.
Если опровергаемое прямым способом положение — общее, то для опровержения его достаточно доказать истинность противоположного ему частного положения. Так, чтобы убедиться в ложности общего суждения о том, что все славянские языки имеют формы склонения имён, достаточно узнать об отсутствии форм склонения, например в именах болгарского языка. Так как противоположность здесь — противоречащая, то из истинности частного будет следовать необходимая ложность общего.
Но если опровергаемое прямым способом положение — частное, то для опровержения его уже недостаточно установить истинность противостоящего ему частного положения. Такая противопоставленность, будучи подпротивной, не допускает применения закона противоречия, а потому, доказав истинность частного положения, противостоящего опровергаемому, мы ещё не получим права заключать о ложности опровергаемого положения — тоже частного. Так, желая доказать ложность частного суждения «некоторые языки являются надстройкой над базисом», мы не можем удовлетвориться доказательством того, что «некоторые языки не являются надстройкой над базисом». Доказательство истинности этого частного положения не позволяет сделать заключение о ложности противостоящего ему частного положения: как подпротивные, оба суждения могут оказаться истинными. В этом случае для доказательства прямым способом ложности частного положения необходимо доказать истинность противоречащего ему общего положения, другими словами, доказать, что «ни один язык не является надстройкой».
Но опровержение может быть и косвенным. Оно совершается посредством уже известного нам приёма «приведения к нелепости» (reductio ad absurdum). Получение нелепого заключения путём вывода, все основания которого, кроме одного, заведомо истинны, и есть косвенное опровержение, т. е. косвенное доказательство посредством закона противоречия ложности того единственного основания, относительно которого не было известно, истинно оно или ложно, и которое только предполагалось истинным.
3. Различие доказательств по роли опытных данных как оснований доказательства
Во всех науках и во всех научных доказательствах все понятия, которые входят в состав доказательства, ведут своё происхождение в конечном счёте из материальной практики, из опыта. В этом отношении не составляют исключения и доказательства математических наук. Правда, понятия, которыми пользуется математик, отвлекаются от целого ряда свойств, принадлежащих предметам этих понятий. Математический круг, куб, шар и т. д. не существуют в опыте в том виде, в каком их мыслит ум геометра. И всё же даже самые отвлечённые понятия математики возникли в конечном счёте из опыта и на основе опыта. Это справедливо и относительно математических определений и относительно аксиом, т. е. недоказываемых положений, принадлежащих к начальным основаниям всего математического знания. Какими бы далёкими от опыта, а иногда даже противоречащими опыту ни казались эти определения и аксиомы,— все они в конце концов являются продуктами отвлечения от известных сторон опыта и не могли сложиться в мысли иначе, как на основе опыта.
Идеалисты отрицают опытное происхождение математических понятий. При этом они опираются на то, что математика мыслит свои предметы — линии, поверхности, тела и т. д.— такими, какими они в точности никогда не бывают в действительности. Математическая линия, например, имеет лишь длину, но не имеет ни ширины, ни высоты, математическое тело есть лишь замкнутая математическими поверхностями часть пространства, мыслимая независимо от наполняющего пространство вещества, и т. д. Опираясь на эту отвлечённость современных математических понятий, идеалисты утверждают, будто понятия эти не могут иметь своим источником опыт и потому являются априорными, т. е. внеопытными и доопытными.
Так, идеалист Кант утверждает, будто «настоящие математические положения всегда суть априорные, а не эмпирические суждения, потому что они обладают необходимостью, которая не может быть заимствована из опыта»[25].
И точно так же идеалист-неокантианец Эрнст Кассирер утверждает, будто тенденция современной науки «всё более и более ведёт к тому, что устраняются «данные» элементы, как таковые, и им не уделяется никакого влияния на общую форму хода доказательства»[26]. «Всякое понятие и всякое положение, которое употребляется в ходе доказательства и не служит просто для целей наглядности, должно быть обосновано строго и выведено целиком из законов конструктивной связи»[27].
Выражаясь проще, математическое понятие есть, согласно взгляду идеалистов, не порождение опыта, а порождение (или построение, «конструкция») ума, отливающееся в априорные формы мысли и возникающее по априорным законам мышления.
Учение идеализма о внеопытном и доопытном характере математических понятий совершенно ошибочно. Несостоятельность этого учения была доказана Энгельсом в «Анти-Дюринге». Исходя из того же самого факта — крайней обобщённости и отвлечённости математических понятий,— на котором идеализм всегда строил свою философию математики, Энгельс показал, что правильным объяснением этого факта может быть только материалистическое. «Понятие фигуры, как и понятие числа,— разъяснял Энгельс,— заимствовано исключительно из внешнего мира, а не возникло вовсе в голове из чистого мышления. Раньше чем люди могли прийти к понятию фигуры, должны были существовать вещи, которые имели форму и формы которых сравнивали. Чистая математика имеет своим предметом пространственные формы и количественные отношения действительного мира, т. е. весьма реальное содержание. Тот факт, что это содержание проявляется в крайне абстрактной форме, может лишь слабо затушевать его происхождение из внешнего мира. Чтобы изучить эти формы и отношения в их чистом виде, следует их оторвать совершенно от их содержания, устранить его как нечто безразличное для дела. Так получаются точки без протяжения, линии без толщины и ширины, а и Ь, х и у, постоянные и переменные. ..Точно так же выведение математических величин как будто бы друг из друга доказывает не их априорное происхождение, но только их рациональную связь. Прежде чем пришли к мысли выводить форму цилиндра из вращения прямоугольника вокруг одной из его сторон, нужно было исследовать не мало реальных прямоугольников и цилиндров, хотя бы и в весьма несовершенной форме... как и во всех областях мышления, отвлеченные от действительного мира законы на известной ступени развития отрываются от действительного мира, противопоставляются ему как нечто самостоятельное, как явившиеся извне законы, по которым должен направляться мир... так, а не иначе, применяется впоследствии чистая математика к миру, хотя она и заимствована из этого мира и представляет только часть его составных форм несобственно, только поэтому она вообще применима к нему»[28].