Среди химических газов, меняющих газовый состав атмосферы, особая роль отводится CO2, который, поступая в атмосферу, создает тепличный эффект. При возрастающей скорости поступления газа в ближайшие 100 лет его воздействие на климат может стать ощутимым.
В атмосферу поступают и фотохимически активные малые примеси: фреоны, фтористые, бромистые и хлорные соединения, которые разрушают озонный слой и влияют на тепловой режим планеты. Целый ряд химически активных малых примесей, таких, как окислы азота, те же фреоны и др., обладает свойствами поглощать солнечную радиацию и тем самым воздействовать на тепловой режим атмосферы, либо уменьшая метеорологическую солнечную постоянную, либо увеличивая действие тепличного эффекта.
В связи с ростом населения и объема производства, развитием энергетики возрастает поступление в атмосферу тепловых выбросов. Оно уже сейчас ощутимо в крупных городах и промышленных центрах. Вполне естественно, что в дальнейшем этот процесс усилится. Отсюда крайне важно знать, как тепловые выбросы повлияют на погоду и климат.
Можно указать еще несколько видов человеческой деятельности, которые могут отразиться на климате. К ним относятся: загрязнение океана нефтяными продуктами, нарушающее тепло- и влагообмен между атмосферой и океаном, воздействие на облака с целью стимулирования осадков, сжигание топлива, увеличивающее выброс в атмосферу водяного пара, действие оросительных систем, повышающее испарение и др.
Пагубное воздействие на климат могут оказать испытания ядерного оружия, способствующие образованию и накапливанию в атмосфере аэрозоля, окислов азота, радиоуглерода и других компонентов, разрушающих озонный слой, и др. В настоящее время ни теоретическая база, ни уровень технических возможностей не позволяют ставить задачу намеренного воздействия на климат. Однако в будущем эта задача может оказаться посильной для человечества.
Несомненно, развитие основных отраслей экономики в значительной мере будет обусловлено развитием топливно-энергетического комплекса, функционирование которого, с одной стороны, зависит от климатических условий, а с другой — влияет на окружающую среду и климат. Существует по крайней мере несколько видов воздействия топливно-энергетического комплекса на климат.
Прежде всего это выбросы в атмосферу аэрозолей, из которых наибольшее значение имеют сажа и продукты сгорания в виде соединений серы. Второй вид — поступление в атмосферу радиационно-активных малых газовых компонентов в результате сжигания химического топлива. Сюда относятся углекислый газ и окислы азота, влияющие на углеродный и азотный циклы в системе атмосфера—океан—биосфера—почвы суши. Следующий вид — воздействие на подстилающую поверхность.
Наиболее важным видом воздействия топливно-энергетического комплекса на погоду и климат некоторые авторы считают влияние тепловых выбросов непосредственно в атмосферу и океаны. При любых оценках влияния топливно-энергетического комплекса на погоду и климат важно иметь правильное представление о тенденциях развития топливно-энергетической базы в мире.
На рис. 18 приведен график, иллюстрирующий суммарное потребление энергии в мире. В среднем оно составляет 2% в год. Эта цифра принципиально важна для оценки тенденций будущего роста энергетических мощностей, поскольку некоторые исследователи явно завышают процент до 4, а то и до 6.
Основным источником топлива в настоящее время является каменный уголь. По данным международного Института системного анализа на 1974 г. мировые запасы угля всех сортов, от антрацита с теплотворной способностью 8000 ккал/кг до бедных углей с теплотворной способностью 3500 ккал/кг или менее, составили 1,0754·1013 т, что эквивалентно запасам 8,4·1011 т угля с теплотворной способностью 7000 ккал/кг.
Академики В. А. Кириллин и М. А. Стырикович общие запасы условного топлива, включая нефть и газ, оценивают в 1,29·1013 т. Считается, что на 80% условное топливо состоит из каменного угля.
Рис. 18. Рост производства энергии в мире по данным энергетического проекта международного Института системного анализа.
1 — средний рост потребления энергии; 2 — фактический
Рис. 19. Характеристика предполагаемого роста различных источников топлива в мире
В 1975 г. по материалам Академии наук США запасы энергетических ресурсов исчислялись так: жидкая нефть, натуральный газ и уголь соответственно 10,55·1021, 7,60·1021, 276,2·1021 Дж (в сумме 294,35·1021 Дж), т. е. на долю угля, нефти и газа приходится соответственно 94,2, 3,5 и 2,3% общей суммы.
Все это позволяет сделать следующие выводы:
основными продуктами сжигания топлива в будущем будут продукты сжигания угля;
добыча топлива и его сжигание будут осуществляться в нескольких крупных регионах мира и неравномерно распределятся на поверхности Земли. Эти два обстоятельства крайне важны при оценке воздействия топливно-энергетического комплекса на климат.
Наиболее вероятное годовое потребление энергии в мире в 1985, 2000 и 2025 гг. эксперты оценивают соответственно 329·1018, 567·1018 и 1238·1018 Дж.
Более детальный анализ указывает на следующую динамику развития топливно-энергетического комплекса. Если потребление дерева в качестве источника топлива в начале XIX в. составляло 90%, то теперь оно снизилось до 10%. Удельный же вес угля сейчас близок к 50%, а нефти и газа — к 30%. На долю гидроэнергетики падает не более 10—12%.
Ожидаемое распределение источников энергии приведено на рис. 19. Очевидно, что вклад нефти и газа в ближайшие 30—50 лет будет существенным. В результате возрастет роль угля, возобновляемых источников энергии (Солнце, ветер, геотермальное тепло и др.). Роль гидроэнергетики, по-видимому, останется на прежнем уровне.
С этих позиций, а также с позиций учета предполагаемого роста населения и потребления энергии на душу населения следует оценить тенденции роста энергетических мощностей в мире и возможные климатические изменения, вызываемые этим ростом.
В настоящее время по уровню потребления энергии можно выделить три группы стран (табл. 10).
Как видим, в большинстве стран — низкий уровень потребления энергии. Но именно в них наиболее интенсивно растет население. В связи с этим проблема обеспечения продовольствием, водой, сырьем, промышленными и другими товарами будет зависеть от состояния топливно-энергетической базы.
Уже сейчас можно попытаться оценить влияние энергетических нагрузок на климат, считая, что большая часть произведенной энергии перейдет в тепло и будет выброшена либо целиком в атмосферу, либо частично в атмосферу, а частично в воды суши и океана.
Некоторые исследователи утверждают, что в ближайшие десятилетия будет достигнут тепловой барьер и климат резко потеплеет. Чтобы заметно повысить среднюю температуру атмосферы, и то в региональном масштабе, нужно затратить энергию не менее 300—500 ТВт. При этом тепловая нагрузка в среднем по полушарию составит не более 0,1 Вт/м2 по сравнению с энергией в 350 Вт/м2, приходящей на верхнюю границу атмосферы от Солнца. Если же равномерно распределить тепловую нагрузку в 100 ТВт по земному шару, то в среднем она составит всего 0,02 Вт/м2, а при реальных тепловых нагрузках — тысячные доли. Из уравнения теплового баланса для сферы вытекает, что этот вклад пренебрежимо мал и практически не повлияет на среднюю глобальную температуру.
Таблица 10. Среднее потребление энергии в мире (на 1970 г.)
% к общему числу стран | Секторы экономики и потребляемая ими энергия | Среднее потребление энергии на душу населения | |||||
---|---|---|---|---|---|---|---|
промышленность | транспорт | бытовые нужды + сельское хозяйство | |||||
% | кВт/чел | % | кВт/чел | % | кВт/чел | ||
1. Высокий уровень потребления энергии, 7 кВт/чел | |||||||
3 | 42 | 4,2 | 22 | 2,2 | 36 | 3,6 | 10,0 |
2. Средний уровень потребления энергии, 2-7 кВт/чел | |||||||
22 | 56 | 2,5 | 14 | 0,6 | 30 | 1,3 | 4,4 |
3. Низкий уровень потребления энергии, менее 2 кВт/чел | |||||||
75 | 47 | 0,5 | 29 | 0,3 | 24 | 0,25 | 1,05 |