Вот что любопытно! Рабочий, не вооруженный запасом инженерных знаний, как другие авторы поперечных турбин, лишенный широкого потока информации по данной проблеме, — а предложил такую удачную конструкцию, обогнав многих известных конструкторов.
Только не говорите, что это чудо! Так бывает. И нередко. Порой интуиция подсказывает изобретателю решение, которое ускользает от самых изощренных теоретических изысканий. Но это ни в коей мере не унижает теорию! Значение таких примеров состоит в том, что они показывают, как практика подстегивает теорию, не дает ей остановиться на достигнутом. И удача Е. Бирюкова не была чудом, разрушающим теоретические построения. То, что мы в конце концов можем познать и объяснить, нельзя называть чудом.
«Могу ли я ручаться, что турбина Е. Бирюкова — лучшая в своем роде?» — спросил я себя. За месяц работы в Государственной патентной библиотеке мне удалось собрать почти всю информацию по этому вопросу. Работы по поперечным турбинам велись в 26 странах. Оказалось, что не финн Сигурд И. Савониус является изобретателем поперечной турбины, как считалось ранее, а наши соотечественники А. Воронин и Я. Воронин. Их заявка на изобретение была подана 2 октября 1924 года — на 2 месяца и 10 дней раньше финского патента Савониуса.
Там же, в библиотеке, мне удалось восстановить облик 312 турбин. Одни из них полностью или частично повторяли турбины Ворониных, другие были крайне неудачны, несовершенны, а были и просто порочные в техническом смысле. Для сравнительных испытаний мне удалось отобрать всего 43 турбины.
Осталось провести испытания, которые были чем-то вроде отборочного конкурса для подыскания подходящей «собаки» к задуманной «упряжке». Скорость потока мы выдерживали для всех турбин одну и ту же. Чем быстрее вращается турбина при неизменной нагрузке, рассуждали мы, тем выше ее к.п.д. И вот оказалось, что турбина Е. С. Бирюкова полезно использует 41 процент энергии потока. Она была лучшей из турбин-соискательниц. Оставалось взять ее за основу и лишь немного усовершенствовать.
Итак, «собака» для нашей «упряжки» отыскалась. Остается подобрать «упряжь», связать турбины одной веревочкой.
Вроде нехитрая вещь — веревочка. Даже если за ее солидную толщину уважительно называют «канат», сущность ее не меняется. Пеньковые, конопляные, джутовые, льняные канаты — все они пришли к нам из глубокой древности: ни строительство египетских пирамид, ни катапульты греков не обходились без них. Но время шло, и уже техника прошлого века потребовала более прочных и износоустойчивых канатов. Нити растительных волокон, из которых сплетался канат, заменила высокопрочная проволока. Канаты стали стальными. Их с большим уважением стали называть тросами.
Мы доверяем тросам самую ответственную работу. Они поднимают клети шахт, кабины лифтов. Все грузоподъемные машины — от кранов до лебедок — без тросов как без рук. Мы привыкли к тросам и не находим в них ничего необычного. А между тем трос — удивительная штука. Сплетенный из тонких проволочек, он выдерживает до двадцати шести тонн на каждый квадратный сантиметр сечения! А для такого же сплошного прута предел — одиннадцать тонн.
Как известно, трос работает на растяжение. Но людей давно интересовало, можно ли заставить его воспринимать также и другие виды нагрузок? Например, можно ли заставить трос работать на скручивание? Оказалось, можно. Для этого надо заключить его в оболочку, в трубку. Так появились гибкие валы. Они применяются в бормашинах, которые каждый видел в кабинете зубного врача, в приводах спидометров автомашин, различных переносных инструментах. Однако за счет трения троса об оболочку в передаче вращения посредством гибкого вала теряется до трети мощности. Но как бы то ни было, в тросах заложено куда больше возможностей, чем кажется на первый взгляд. Тросы прекрасно справляются с функцией трансмиссии — средней, передающей части в четкой схеме: двигатель — трансмиссия — рабочая машина. Двигатель вырабатывает энергию, трансмиссия передает, а рабочая машина использует.
Случай привел меня в одну из лабораторий исследовательского института, в которой изучались закономерности возникновения стоячих волн на тросе толщиной с карандаш при его вращении. Электромотор вращал растянутый в воздухе трос метров этак в десять длиной. На тросе при вращении появлялись так называемые узлы и пучности. В узлах трос как бы стоял неподвижно, а в пучностях так вибрировал, что была видна лишь тень шириной в десять сантиметров, а может быть, и пятнадцать. Меняли число оборотов, и количество пучностей менялось.
Меня охватило страстное желание поэкспериментировать. Беру со стола напильник и его ручкой пытаюсь надавить на пучность — картина сразу изменилась… Мотор с грохотом упал на пол. Испуганно вскрикнула сотрудница. Я попросил прощения. Тут было много людей, но никто не понял, что произошло. «До чего же люди ненаблюдательны, — подумал я. — Никто не заметил главного». А главное — конечно, с моей точки зрения — было совсем не в том, что упал мотор. Во-первых, я видел, что исчезли стоячие волны и трос начал вращаться, как сплошной вал. А во-вторых, он при этом укоротился, отчего электромотор и съехал со стола.
Я вспомнил этот эпизод потому, что оба подмеченных мною момента имеют непосредственное отношение к задаче создания одной «упряжки» из нескольких вингроторных турбин.
Эта задача решалась не сразу и не вдруг, а в напряженной и трудоемкой работе, проходившей то под открытым небом — на берегах тихой речки, красы российских деревень, — то в лабораторных условиях, а то и за столом над листом бумаги, исписанным цифрами, изрисованным схематическими набросками.
Я расскажу подробно, как рождалась эта гидросиловая установка, потому что здесь проявились результаты объединенного действия двух побудительных сил творчества. С одной стороны, сознательное, целеустремленное желание решить задачу, важность которой была ясна с самого начала. С другой — необходимость быстро реагировать ответными действиями на отдельные частные удары, которые так и сыплются обычно на того, кто вступает на нехоженые пути.
Рождение зрелой конструкции — это такой процесс, логика которого не во всем совпадает с тем, в какой последовательности приходилось искать ответы на те или иные вопросы. А между тем логика-то как раз и гораздо важнее. Поэтому в моем рассказе я постараюсь дать представление именно о том, как идея развивалась от, так сказать, зародыша до зрелого решения. И совершенно не важно, где и когда был сделан каждый отдельный шаг.
Принципиальное решение задачи было таким. На трос нанизывают ряд поперечных турбин. Один его конец свободно закрепляют в упорном подшипнике, другой на противоположном берегу через редуктор присоединяют к рабочей машине — генератору. Течением воды трос натягивается, турбины раскручиваются, трос вращается, как их общая ось, и приводит во вращение генератор… Вот и все!
Нельзя забывать и силу натяжения, возникающую при этом, — ту самую, которая свалила электромотор с лабораторного стола. Оба конца троса должны проходить через подшипники, хорошо закрепленные в опорах.
Правда, при какой-то скорости вращения троса могут появиться стоячие волны. Как их убрать? На такой вопрос мог ответить только опыт… Конечно, решение было найдено, а как — это уже другая тема. Мы же должны вернуться к нашей «упряжке», или, лучше сказать, гирлянде, которую нанизанные на трос турбины внешне очень напоминают. Установка так и называется: гирляндная гидросиловая установка.
Вода в реках быстро течет только в верхнем слое. Этот слой и надо заставить крутить турбины, протянув гирлянду по всей ширине реки. Трос с закрепленными на нем роторами весит немало, но когда поток начнет вращать турбины, появится эффект Магнуса (вспомним роторное крыло!), и тогда турбины всплывут. Была бы достаточной скорость течения, например, полтора метра в секунду.