Finally, MPEG approached Fraunhofer with a compromise. The committee would make multiple endorsements. Fraunhofer would be included, but only if they agreed to play by certain rules, dictated by MUSICAM. In particular, they would have to adopt a gangrenous piece of proprietary technology called a “polyphase quadrature filter bank.” Four uglier words did not exist. Some kind of filter bank was necessary—this was the technology that split sound into component frequencies, the same way a prism did to light. But the Fraunhofer team already had its own filter bank, which worked fine. Adding another would double the complexity of the algorithm, with no increase in sound quality. Worse, Philips had a patent on the code, which meant giving an economic stake in Fraunhofer’s project to its primary competitor. After a long and heated internal debate, Brandenburg finally agreed to this compromise, as he didn’t see a way forward without MPEG’s endorsement. But to others on the project, it looked like Fraunhofer had been fleeced.
In April 1991, MPEG made its endorsements public. Of the 14 original contenders, three methods would survive. The first was termed Moving Picture Experts Group, Audio Layer I, a compression method optimized for digital cassette tape that was obsolete practically the moment the press release was distributed. Then, with a naming scheme that could only have come from a committee of engineers, MPEG announced the other two methods: MUSICAM’s method, which would henceforth be known as the Moving Picture Experts Group, Audio Layer II—better known today as the mp2—and Brandenburg’s method, which would henceforth be known as the Moving Picture Experts Group, Audio Layer III—better known today as the mp3.
Seeking to create a unified framework for collaboration, MPEG had instead sparked a format war. The mp3 had the technical edge, but the mp2 had name recognition and deeper corporate backing. The MUSICAM group was really just a proxy for Philips, and Philips was visionary. The company was making a fortune in licensing from the compact disc, but already, in 1990, with CD sales just starting to outpace vinyl, it was looking to control the market for its eventual replacement.
This farsighted strategic planning was complemented by a certain gift for low cunning. By this time, both Brandenburg and Grill were beginning to suspect that the suits at Philips were influencing MPEG’s decisions by lobbying behind the scenes. Johnston, the American, shared these suspicions of favoritism, and scoffed at the ridiculous three-tiered “layer” scheme, a last-minute rule change MPEG had made only when its favored team looked likely to lose. Brandenburg, Grill, and Johnston all used the same word to describe this emergent phenomenon: “politics”—a hateful state of affairs in which personal relationships and business considerations trumped raw scientific data.
MPEG defended its decisions and denied any allegations of bias. MUSICAM researchers were indignant at the suggestion. Still, history showed that, from the AC/DC “Current Wars” of the late nineteenth century to the VHS-Betamax battle of the 1980s, victory didn’t necessarily go to the best, but to the most vicious. From Edison to Sony, the spoils were won by those who not only promoted their own standard, but who cleverly undermined the competition. There was a reason they called it a format “war.”
The Fraunhofer team, consisting of young, naive academics, were unprepared for such a battle. Over the next few years, in five straight head-to-head competitions, they got swept. Standardization committees chose the mp2 for digital FM radio, for interactive CD-ROMs, for Video Compact Disc (the predecessor to the DVD), for Digital Audio Tape, and for the soundtrack to over-the-air HDTV broadcasting. They chose the mp3 for nothing.
In discussions with other engineers, the team kept hearing the same criticism: that the mp3 was “too complicated.” In other words, it ate up too much computer processing power for what it spit out. The problem could be traced to Philips’ baneful filter bank. Half of the “work” the mp3 did was just getting around it. In the engineering schematics explaining mp3 technology, the flowchart showed how Brandenburg’s algorithm sidestepped the filter bank entirely, like a detour around a car crash.
The Fraunhofer team began to see how they’d been outmaneuvered. Philips had convinced Fraunhofer to adopt its own inefficient methodology, then pointed to this exact inefficiency to sink them with the standards committees. Worse, engineers there seemed to have started a whisper campaign, to spread the word about these failures to the audio engineering community at large. It was a commendable piece of corporate sabotage. They’d tricked Fraunhofer into wearing an ugly dress to the pageant, then made fun of them behind their backs.
But Brandenburg was not one to cry in the corner—ugly dress or not, he was determined to win. In July 1993, he was given a Fraunhofer directorship. Though he had zero business experience and was fighting from a losing position, he drove his team at all hours. Around this time a gang of thieves broke into the Erlangen campus in the middle of the night, making off with tens of thousands of dollars in computing equipment. Every division was hit, save for the floor that housed audio research. There, at some dead hour of the night, long after everyone else had gone home, two mp3 researchers were still in the listening lab, deaf to the world in their expensive Japanese headphones.
This dedication brought results. By 1994, the mp3 offered substantial improvements in audio quality over the mp2, although it still took slightly longer to encode. Even at the aggressive 12 to 1 compression ratio, the mp3 sounded decent, if not quite stereo quality. Twelve years after a patent examiner had told Seitzer it was impossible, the ability to stream music over digital phone lines was nearly at hand. Plus, there was the growing home PC market, and the prospect of locally stored mp3 media applications.
They just had to make it that far. In early 1995, the mp2 again beat the mp3 in a standards competition, this time for a massive market: the audio track for the home DVD player. Having watched Brandenburg’s team go zero for six, the budget directors at Fraunhofer were starting to ask hard questions. Like: why haven’t you won a standards competition yet? And: why do you have fewer than 100 customers? And: do you think perhaps we could borrow some of your engineers for a different project? And: remind me again why the German taxpayer has sunk millions of deutsche marks into this idea?
So in the spring of 1995, when Fraunhofer entered its final competition, for a subset of multicast frequencies on the European radio band, winning was everything. This was a small market, certainly, but one that would provide enough revenue to keep the team together. And for once there was reason for optimism: the group’s meetings rotated through its membership base, and this time Fraunhofer was scheduled to host. They’d be on home turf, and the final decision on the mp3 would be hashed out in a conference room just down the hall from the laboratory where, seven years earlier, the work on the piccolo had begun.
For months in advance, the broadcasting group strung Fraunhofer along. They promised to revisit the decisions of the past and encouraged them to continue the development of the mp3. They welcomed Brandenburg’s presence in committee meetings and told him they understood the funding difficulties his team was facing. They urged him to hold on just a little bit longer. In advance of the meeting, the committee’s specialized audio subgroup even formally recommended the adoption of the mp3.
Still, Brandenburg wanted nothing left to chance. He put together an engineering document that comprehensively debunked the complexity myth. Fifty pages long, it included a chart showing how, for the past five years, processing speed had outpaced bandwidth gains, just as he had predicted.