Вряд ли существует лучший способ пробудить интерес читателя к изучаемому материалу. Преподаватель математики, выговаривающий студентам за игру на лекции в крестики и нолики, должен был бы остановиться, чтобы спросить себя, не представляет ли эта игра большего интереса с точки зрения математики, чем его лекция. И действительно, разбор игры в крестики и нолики на семинарских занятиях может послужить неплохим введением в некоторые разделы современной математики.
Известный английский изобретатель головоломок Генри Дьюдени в своей статье «Психологическая сторона увлечений головоломками», опубликованной в декабрьском номере Nineteenth Century Magazine за 1926 год, писал, что литература по занимательной математике страдает чудовищными повторениями, а отсутствие соответствующей библиографии вынуждает энтузиастов понапрасну тратить время на составление задач, которые были уже придуманы задолго до них. Сегодня я счастлив сообщить, что потребность в подобного рода библиографии удовлетворена. Профессор У. Л. Шааф из Бруклинского колледжа составил превосходную библиографию.[2] Что же касается второго упрека Дьюдени, то боюсь, что он все еще справедлив как по отношению к выходящим в наше время книгам по занимательной математике, так и по отношению к книге, предлагаемой вниманию читателей. Но я хочу надеяться, что в моей книге читатели обнаружат большую, чем обычно, порцию свежего материала, который прежде не находил места на страницах занимательной математической литературы.
Мне хотелось бы поблагодарить Дж. Пила, издателя журнала Scientific American, и редактора Д. Фленегена за оказанную мне честь принадлежать к числу постоянных авторов этого журнала и за разрешение воспроизвести плоды моих трудов в этой книге. Я выражаю свою признательность тысячам читателей со всех концов света, которые взяли на себя труд обратить мое внимание на допущенные в них ошибки (к сожалению, слишком многочисленные) и внесли множество ценных предложений. В некоторых случаях эта приветствуемая мной «обратная связь» нашла отражение непосредственно в тексте, но чаще всего из замечаний читателей составлены дополнения, помещенные в конце глав. Ответы к задачам, где это необходимо, помещены там же.
Не могу не выразить благодарности своей жене не только за то, что она со знанием дела и неизменной бодростью духа принимала участие в чтении корректур, но и за проявленное ею терпение, когда, погруженный в размышления о какой-либо математической головоломке, я не слышал того, что она мне говорила.
Мартин Гарднер
Глава 1. ГЕКСАФЛЕКСАГОНЫ
Флексагоны — это многоугольники, сложенные из полосок бумаги прямоугольной или более сложной, изогнутой формы, которые обладают удивительным свойством: при перегибании флексагонов их наружные поверхности прячутся внутрь, а ранее скрытые неожиданно выходят наружу. Если бы не одно случайное обстоятельство — различие в формате английских и американских блокнотов, — флексагоны, возможно, не были бы открыты и по сей день и многие выдающиеся математики лишились бы удовольствия изучать их замысловатую структуру.
Это произошло в конце 1939 года. Как-то раз Артур X. Стоун, двадцатитрехлетний аспирант из Англии, изучавший математику в Принстоне, обрезал листы американского блокнота, чтобы подогнать их под привычный формат. Желая немного развлечься, Стоун принялся складывать из отрезанных полосок бумаги различные фигуры. Одна из сделанных им фигур оказалась особенно интересной. Перегнув полоску бумаги в трех местах и соединив концы, он получил правильный шестиугольник (рис. 1).
Рис. 1 Тригексафлексагон складывают из полоски бумаги, предварительно размеченной на 10 равносторонних треугольников (а). Полоску перегибают по линии db и переворачивают E). Перегнув полоску еще раз по линии cd, расположим ее концы так, чтобы предпоследний треугольник оказался наложенным на первый (в). Последний треугольник нужно подогнуть вниз и приклеить к оборотной стороне первого треугольника (г). Как сгибать трифлексагон, показано на рис. 3. Развертку трифлексагона нужно перечертить и вырезать из полоски достаточно плотной бумаги шириной около 3–4 см.
Взяв этот шестиугольник за два смежных треугольника, Стоун подогнул противоположный угол вниз так, что его вершина совпала с центром фигуры. При этом Стоун обратил внимание на то, что, когда шестиугольник раскрывался словно бутон, видимой становилась совсем другая поверхность. Если бы обе стороны исходного шестиугольника были разного цвета, то после перегибания видимая поверхность изменила бы свою окраску. Так был открыт самый первый флексагон с тремя поверхностями. Поразмыслив над ним ночь, Стоун наутро убедился в правильности своих чисто умозрительных заключений: оказалось, можно построить и более сложный шестиугольник с шестью поверхностями вместо трех. При этом Стоуну удалось найти настолько интересную конфигурацию, что он решил показать свои бумажные модели друзьям по университету. Вскоре «флексагоны» в изобилии стали появляться на столе во время завтраков и обедов, когда вся компания собиралась вместе. Для проникновения в тайны «флексологии» был организован «Флексагонный комитет». Кроме Стоуна, в него вошли аспирант-математик Бриан Таккермен, аспирант-физик Ричард Фейнман и молодой преподаватель математики Джон У. Тьюки.
Постоянные модели были названы гексафлексагонами: «гекса» — из-за шестиугольной формы, «флексатонами» — из-за их способности складываться.[3] Первый построенный Стоуном флексагон был назван тригексафлексагоном, так как у него были три поверхности. Вторая не менее изящная модель Стоуна получила название гексагексафлексагона (первое «гекса» — шесть — также означает число поверхностей этой модели).
Чтобы сложить гексагексафлексагон, берут полоску бумаги (великолепным материалом для изготовления гексагексафлексагонов может служить лента для кассовых аппаратов), разделенную на 19 равносторонних треугольников. В треугольники с одной стороны нужно вписать в указанном на рис. 2 порядке цифры 1, 2, 3.
Девятнадцатый (последний) треугольник остается незаполненным.
Треугольники на обратной стороне следует в соответствии со схемой на рис. 2 пронумеровать цифрами 4, 5, 6. После этого полоску складывают так, чтобы треугольники на ее обратной стороне, имеющие одинаковые цифры, оказались наложенными друг на друга — 4 на 4, 5 на 5, 6 на 6. В результате у нас получится заготовка сагексафлексагона, показанная на рис. 2, б. Перегнув ее по линиям аЬ и cd (рис. 2, б), получим шестиугольник. Остается лишь подвернуть вниз торчащий вправо пустой треугольник и приклеить его к пустому треугольнику на нижней стороне полоски. Проделать все эти операции намного легче, чем описать.
Рис. 2 Гексагексафлексагоны складывают из полоски бумаги, разделенной на 19 равносторонних треугольников (а). Треугольники на одной стороне полоски обозначены цифрами 1, 2, 3; треугольники на другой стороне — цифрами 4, 5, 6. Вместо цифр треугольники можно раскрасить в различные цвета (каждой цифре должен соответствовать только один цвет) или нарисовать на них какую-нибудь геометрическую фигуру. Как складывать полоску, ясно из рисунка. Перегибая гексагексафлексагон, можно увидеть все шесть его разворотов.
Если все сделано верно, то во всех треугольниках на видимой стороне шестиугольника должна стоять цифра 1, а во всех треугольниках на обратной стороне — цифра 2. В таком виде сафлексагон готов к перегибаниям. Взявшись за два смежных треугольника (рис. 3), согнем шестиугольник по общей стороне этих треугольников и подогнем противоположный угол флексагона. При этом откроются треугольники с цифрами 3 или 5. Перегибая флексагон наугад, вы без труда обнаружите и остальные поверхности.