Широкие возможности открывает использование игральных карт. Например, можно ли так расположить карты в колоде, чтобы, сняв любую часть колоды и выложив содержащиеся в ней карты в виде квадрата, вы всегда получили одно и то же число? Этот принцип почти не исследован, и здесь предстоит еще открыть много интересного.

Новый вариант магического квадрата разработал С. Джеймс.

Этот вариант позволяет «внушать» аудитории любое слово по вашему желанию. Допустим, вы задумали слово «Джеймс». Взяв 36 карточек с нужными вам буквами, вы раскладываете их в форме квадрата следующим образом:

Математические головоломки и развлечения _12.jpg_0

(карточки повернуты обратной стороной вверх, и буквы зрителям не видны).

Попросив кого-нибудь выбрать одну из карточек, вы откладываете ее в сторону, не переворачивая. Остальные карточки, находившиеся в одном столбце и одной строке с выбранной, вы откладываете в другую сторону (они вам больше не понадобятся). Эта процедура повторяется еще четыре раза, после чего единственную оставшуюся карточку вы добавляете к уже отложенным. Перевернув отобранные карточки лицевой стороной вверх, вы показываете, что из них можно составить слово «Джеймс». Способ отбора гарантирует, что среди отложенных карт не будет лишних.

Один из читателей сообщил нам, что ему удалось найти еще одно неожиданное применение магических квадратов: он рисовал их на поздравительных открытках, которые посылал своим друзьям-математикам в день их рождения. Следуя содержавшейся в открытке инструкции, адресат складывал выбранные им числа и к немалому своему удивлению получал собственный возраст.

Глава 3. ДЕВЯТЬ ЗАДАЧ

1. Путешествие по замкнутому маршруту. Многим читателям, по-видимому, известна старая головоломка: «Путешественник проходит один километр на юг, поворачивает, проходит один километр на восток, еще раз поворачивает, проходит один километр на север и оказывается в том самом месте, откуда вышел. Здесь он ловким выстрелом убивает медведя. Спрашивается, какого цвета шкура убитого медведя?»

Избитый ответ «белого» основан на неявном предположении, что исходной и конечной точкой замкнутого маршрута непременно должен быть Северный полюс. Не так давно было сделано открытие, что Северный полюс — отнюдь не единственная точка, удовлетворяющая всем условиям этой задачи!

Можете ли вы указать еще какую-нибудь точку земного шара, из которой можно было бы пройти один километр на юг, один километр на восток, один километр на север и снова оказаться в самом начале пути?

2. Покер. Двое играют в покер по следующим необычным правилам. Колоду из 52 карт они раскладывают на столе так, что могут видеть масти и значения всех карт. Первый игрок выбирает любые пять карт, второй делает то же самое, но его выбор ограничен лишь теми картами, которые остались лежать на столе. После этого первый игрок может либо оставить у себя на руках прежние пять карт, либо взять со стола новые карты (не больше пяти) и, выбрав из всех оказавшихся у него на руках карт любые пять, остальные отложить в сторону. Второй игрок вправе поступать точно таким же образом. Выигрывает тот, кто сумеет набрать пятерку карт с наибольшим числом очков. Все масти считаются одинаковыми, то есть флеши[8] разной масти различаются по очкам лишь в том случае, если они состоят из разных карт. Через несколько партий игроки замечают, что первый игрок всегда выигрывает, если он правильно сделает свой первый ход.

Какие пять карт должен выбрать первый игрок в начале игры?

3. Изуродованная шахматная доска. Для этой задачи нам потребуются шахматная доска и 32 кости домино. Размер каждой кости должен быть таким, чтобы она закрывала ровно две клетки доски, тогда 32 костями можно покрыть все 64 клетки.

Предположим теперь, что две угловые клетки, расположенные на концах «белой» диагонали (рис. 13), выпилены и одной кости домино нет.

Математические головоломки и развлечения _13.jpg

Рис. 13 Шахматная доска с выпиленными углами.

Можно ли так расположить оставшиеся кости (их 31), чтобы они полностью покрыли все 62 клетки изуродованной шахматной доски? Если можно, то как? Если нельзя, то докажите, что это действительно невозможно.

4. На распутье. То, о чем мы сейчас расскажем, представляет собой новый вариант давно известного типа логических головоломок. Некий логик решил провести свой отпуск в путешествии по южным морям. Однажды он оказался на острове, который, как водится в задачах этого рода, населяли племя лжецов и племя правдивых туземцев. Члены первого племени всегда лгали, члены второго — всегда говорили только правду. Путешественник дошел до места, где дорога раздваивалась, и вынужден был спросить у оказавшегося поблизости туземца, какая из двух дорог ведет в деревню. Узнать, кем был встреченный туземец—лжецом или правдивым человеком, — путешественник не мог. Все же, поразмыслив, логик задал ему один-единственный вопрос и, получив ответ, узнал, по какой дороге следует идти. Какой вопрос задал путешественник?

5. Перепутанные таблички. Представьте себе, что у вас есть три коробки. В одной лежат два черных шара, во второй — два белых и в третьей — один черный шар и один белый. На коробках в соответствии с их содержимым были надписи ЧЧ, ЧБ и ББ, но кто-то их перепутал, и теперь на каждой коробке стоит надпись, не соответствующая содержимому. Чтобы узнать, какие шары лежат в каждой из трех коробок, разрешается вынимать по одному шару из коробки и, не заглядывая внутрь, возвращать его обратно. Какое минимальное число шаров нужно вынуть, чтобы с уверенностью определить содержимое всех коробок?

6. В Бронкс или Бруклин? Один молодой человек живет в Манхэттене возле станции метро. У него есть две знакомые девушки. Одна из них живет в Бруклине, вторая — в Бронксе. Когда он едет к девушке из Бруклина, то садится в поезд, подходящий к платформе со стороны центра города. Когда же едет к девушке из Бронкса, то садится в поезд, идущий в центр. Поскольку обе девушки нравятся ему одинаково, он просто садится в тот поезд, который приходит первым. Таким образом, в выборе, куда ехать, он полагается на случай. Молодой человек приходит на станцию каждую субботу в разное время. И в Бруклин и в Бронкс поезда ходят с одинаковым интервалом в 10 минут. Тем не менее по каким-то непонятным причинам большую часть времени он проводит с девушкой из Бруклина; в среднем из каждых десяти поездок девять приходятся на Бруклин. Попробуйте догадаться, почему у Бруклина такой огромный перевес.

7. Распиливание куба. Один плотник решил распилить кубик размером 3 х 3 х 3 см на 27 кубиков с ребром в 1 см. Это делается очень просто: надо распилить куб по шести плоскостям, не разнимая его при этом на куски (рис. 14).

Математические головоломки и развлечения _14.jpg

Рис. 14 Распиливание куба.

Можно ли уменьшить число распилов, если после каждого из них складывать отпиленные части по-новому?

8. Ранний пассажир. Один человек, имеющий сезонный билет, привык каждый вечер приезжать на станцию ровно в пять часов. Его жена всегда встречает этот поезд, чтобы увезти мужа домой на машине. Однажды этот человек приехал на свою станцию в 4 ч. Стояла хорошая погода, поэтому он не стал звонить домой и пошел пешком по той дороге, по которой обычно ездила его жена. Встретив по пути жену, он сел в машину, и супруги приехали домой на 10 мин раньше обычного. Предположим, что жена всегда ездит с одной и той же скоростью, обычно выезжая из дому точно в одно и то же время, чтобы успеть к пятичасовому поезду. Можно ли определить, сколько времени муж шел пешком, пока его не подобрала машина?

вернуться

8

Флеш — четыре последовательные карты одной масти.


Перейти на страницу:
Изменить размер шрифта: