Вредное, разрушительное действие кавитации остроумно использовано в повседневной производственной деятельности человека.
Всем хорошо известно, что алюминий очень трудно паять. Трудность заключается в том, что поверхность всех металлов всегда покрыта пленкой окиси. Перед пайкой ее необходимо удалить. Обычно это осуществляют зачисткой, а в момент пайки зачищенное место закрывают веществом, которое предохраняет металл от окисления при нагреве.
Предохраняющие вещества называются флюсами. Таким материалом является, например, канифоль. Все радиолюбители знают, что без нее паять трудно. А сам паяльник предварительно нужно залудить.
Обычные методы пайки для алюминия непригодны. Пленка окиси хотя и не очень прочна, но окисление происходит при самых обычных, комнатных температурах. Поэтому стоит только удалить пленку, как она вновь появляется. Приходится идти на хитрость. Зачистку алюминия производят под флюсом, который одновременно является и припоем. Затем к нанесенному на поверхность алюминия припою напаивают основной металл. Такой процесс пайки труден и ненадежен.
Если воспользоваться явлением кавитации, то пайка осуществляется легко и надежно. Для этого достаточно в жидком припое создать мощные ультразвуковые колебания. Окисленной пленки как не бывало, и припой надежно соединяет алюминий с другим металлом. Пайка алюминия — лишь один из примеров использования явления кавитации. Но этот пример весьма поучителен. Разрушительное действие кавитации обращено здесь на пользу человеку. Использовать явление кавитации удается и в целом ряде других случаев, например при обработке прочных материалов, которые с большим трудом и ненадежно обрабатываются обычным методом.
Явление кавитации, если его разумно направить, открывает широкое поле деятельности для изобретателей и новаторов производства. Кавитация позволяет экономить инструмент и время при обработке различных материалов. Например, необходимо вычистить загрязненное и к тому же заржавленное зубчатое колесо. Если действовать обычными методами, то придется очень долго очищать каждый квадратный сантиметр его поверхности.
Но процесс очистки происходит почти мгновенно, если погрузить колесо в ванну с жидкостью, где созданы мощные ультразвуковые колебания.
Тысячи разрывающихся воздушных пузырьков молниеносно снимут ржавчину и сразу очистят поверхность всех зубьев. А руками пришлось бы чистить по очереди каждый зуб — сколько бы это отняло времени!
Чистка загрязненной поверхности деталей — весьма простая работа для ультразвука. При его помощи можно решать и весьма сложные технические задачи. Вот, например, как ультразвуком проделывают отверстия в твердых сплавах. Изготавливают резец нужной формы и соединяют с излучателем ультразвуковых колебаний. Совершая колебания, резец ударяет в поверхность металла более десятка тысяч раз в секунду. Пока что металл не уступает. Его поверхность по-прежнему тверда; скорей иступится резец, чем в металле будет проделано хотя бы незначительное углубление. Но стоит только смочить металл и добавить абразив, как сразу же картина резко меняется — резец начнет погружаться в металл, как будто перед ним глина. Это происходит потому, что в жидкости, которой смочен металл, возникает кавитация.
Частицы абразива разрыхляют поверхность металла, и резец без труда погружается в него, проделывая отверстие. Качество работы при этом безукоризненное, дополнительной обработки не требуется. Точно таким же образом можно разрезать твердые или очень хрупкие тела — без брака и излишнего отхода материалов.
Особую сложность представляют фрезерные работы. Ультразвук успешно справляется и с ними.
Ультразвуковая обработка экономит время, необходимое для изготовления детали, экономит материал и инструмент, увеличивает производительность труда, изменяет и упрощает кинематику производства.
Одно из интересных свойств ультразвука позволило ему прочно обосноваться в промышленности строительных материалов.
Оказалось, что при помощи высокочастотных колебаний можно проверять качество бетонных сооружений. Если при кладке бетона он был недостаточно уплотнен, внутри образуются раковины — воздушные полости. Их можно обнаружить при помощи ультразвука, прозвучивая сооружение специальным ультразвуковым дефектоскопом.
Просвечивание ультразвуком
Этот прибор позволяет определить размер раковины и глубину ее залегания. Кроме того, выяснили, что скорость распространения ультразвуковых волн по мере созревания бетона увеличивается. Появилась возможность оценивать различные бетонные сооружения.
Бетон не сразу приобретает прочность. При укладке он жидкий, а затем мало-помалу твердеет, пока не превращается в прочный массив. Этот процесс и называется созреванием бетона. Скорость ультразвука в бетоне на разных стадиях созревания различна, поэтому, измеряя ее, можно судить о процессе созревания.
Особая ценность ультразвукового контроля в том, что не требуется разрушать конструкцию из бетона для суждения о ее прочности. До применения ультразвука проверка прочности требовала разрушения специально изготовленных образцов. А это значит, что в конечном счете судили о прочности разрушенного образца, а не настоящего изделия. Ультразвук можно использовать и для повышения качества изготовления различных строительных материалов.
Для цементной, керамической и асбестовой промышленности очень важно получить мелкое зерно строительных материалов, так как от этого зависит прочность изготавливаемых изделий. Размол механическими приспособлениями не позволяет получать очень мелкие частицы. Но если, например, дробить их ультразвуком с частотой 450 тысяч герц, то размеры образующихся при этом частичек не превышают 12 микрон. Такой тонкий размол строительного материала весьма благоприятно сказывается на качестве изделий.
Мы, конечно, не могли рассказать всего об использовании ультразвука. Области его применения настолько широки, что о них можно написать очень много таких книжек. А жизнь идет вперед, каждый день приносит нам нечто новое. И много еще полезного принесет человечеству мир неслышимых звуков.
«Голос моря»
Во вторую мировую войну между флотом союзников и немецкими кораблями разгорелась битва в океане.
На всех побережьях стояли станции подслушивания, на которых специальные приборы были наготове, чтобы в случае опасности предупредить командование о приближении вражеского флота.
И вот однажды была поднята тревога на американском побережье Атлантики. Шум моря, докладывал оператор, не прекращается в течение суток. Но в разное время он то усиливается, то слабеет. Это значит, что в море все время создаются ультразвуковые волны. Если эти ультразвуковые волны создаются винтами подводных лодок и надводных кораблей, то к побережью движется несметный флот противника. Воздушная разведка, однако, не находила кораблей противника, а лишь обнаружила огромное скопление планктона — маленьких рачков, которыми питаются киты. Их, видимо, течением принесло к этому участку. Как выяснили ученые, они-то и создавали ультразвуковые волны, потирая одной лапкой о другую. Тревога была напрасной…
Но наряду с этими неслышимыми звуками в море были обнаружены звуки музыкальных частот.
Морских певцов вскоре обнаружили. Это были… рыбы, те самые немые рыбы, о которых сложили поговорки. Голоса рыб были записаны, и под каждой записью указали имя певца: жаба-рыба, морской петух, рыба-свинка, рыба-квакун, горбыль-пятно и рыба-кошка.
Теперь нельзя пользоваться выражением, когда дают клятву хранить молчание, «нем как рыба». Рыбы, оказывается, имеют голос.
Звуки голосов рыб в основном музыкальные.
Например, звук рыбы-квакун очень похож на звук боцманской «дудки».
Если морских певцов окажется много, то они, возможно, могут устроить настоящий концерт.
Но мир звуков моря не ограничивается ультразвуками планктона и музыкальными звуками рыб. Само море также издает звуки, но их частота меньше 16 герц, они неслышимы, — это инфразвуки…