Метан — это природный газ, горящий в наших печах, в газовых сушилках для одежды и на тепловых электростанциях. Его химическая формула CH4. Это означает, что он состоит из одного атома углерода (символ C, атомный номер 6), связанного с четырьмя атомами водорода (символ H, атомный номер 1). Метан не превращается в ионы, попадая в воду. В действительности он не растворяется в воде. Если не разогреть его до очень высокой температуры, как в пламени, он вообще не распадается на части. Почему NaCl распадается на отдельные ионы Na+ и Cl при растворении в воде, почему углерод всегда образует четыре химические связи и почему метан не распадается на части в воде, образуя ионы? Ответы на эти вопросы и объяснение множества свойств всех атомов можно получить, рассматривая природу многоэлектронных атомов и совокупность систематизированной информации об атомах, содержащейся в Периодической таблице элементов.

Водород — особый

Атом водорода отличается от всех прочих атомов, и это отличие чрезвычайно важно. Атом водорода состоит из положительно заряженного ядра (протона) и одного отрицательно заряженного электрона. Единственное электростатическое взаимодействие в нём — это притяжение электрона к протону, поскольку противоположно заряженные частицы притягиваются. Следующий по простоте атом — гелий. Гелий состоит из положительно заряженного ядра с зарядом +2 (символ He, атомный номер 2) и двух электронов, каждый с отрицательным зарядом −1. Каждый электрон притягивается к ядру; кроме того, два электрона отталкиваются друг от друга, поскольку оба заряжены отрицательно. Это взаимодействие называют электрон-электронным отталкиванием{15}. Поскольку атом водорода имеет лишь один электрон, в нём нет электрон-электронного отталкивания.

На диаграмме энергетических уровней атома водорода (рис. 10.1) орбитали с одинаковым главным квантовым числом n имеют одну и ту же энергию. Таким образом, орбитали 2s и 2p обладают одинаковой энергией. У орбиталей 3s, 3p и 3d энергия тоже одинакова и т. д. Тот факт, что энергия зависит лишь от главного квантового числа, является следствием наличия у водорода единственного электрона. На рис. 10.2, 10.7 и 10.8 формы s-, p- и d-орбиталей существенно различаются. Однако в атоме водорода электрон в среднем находится на одинаковом расстоянии от ядра независимо от формы орбиталей. Поэтому он обладает одинаковой энергией вне зависимости от того, находится он на 3s-, 3p- или 3d-орбитали. Почему? Потому что электрон испытывает одинаковое притяжение к ядру, если усреднять его по пространственному распределению, задаваемому волновыми функциями 3s, 3p или 3d.

Формы орбиталей важны для атомов крупнее водорода

При наличии в атоме более чем одного электрона форма орбиталей становится важна. В атоме гелия, если два его электрона поместить на 2s-орбиталь, энергия будет ниже, чем если поместить их на 2p-орбиталь. В среднем два электрона на 2s-орбитали находятся дальше друг от друга, чем два электрона на 2p-орбитали. Электрон-электронное отталкивание увеличивает энергию. Поскольку два электрона на 2s-орбитали находятся дальше друг от друга, электрон-электронное отталкивание (повышающее энергию) будет не таким сильным, как если бы два электрона находились на 2p-орбитали. Поэтому в многоэлектронных атомах (во всех атомах, кроме водорода) 2s-орбиталь имеет более низкую энергию, чем 2p-орбиталь. При n=3 два электрона на 3s-орбитали в среднем находятся дальше друг от друга, чем если бы они занимали 3p-орбиталь, а два электрона на 3p-орбитали находятся дальше друг от друга, чем если бы они находились на 3d-орбитали. Поэтому 3s-орбиталь ниже по энергии, чем 3p-орбитали, которые, в свою очередь, ниже по энергии, чем 3d-орбитали. Однако 3s-орбитали выше по энергии, чем 2s-орбитали. В среднем электроны на 3s-орбитали находятся дальше от ядра, поскольку 3s-орбиталь больше, чем 2s-орбиталь (см. рис. 10.2, 10.5 и 10.6), а значит, слабее притягиваются к ядру. Следствием более слабого притяжения является более высокая энергия. Притяжение к ядру связывает электрон с ядром. Принятое в физике соглашение о знаке потенциальной энергии устанавливает, что более сильная связь соответствует более низкой энергии. Электроны проваливаются в притягивающий колодец положительно заряженного ядра. Чем сильнее притяжение, тем глубже погружается электрон в потенциальную яму и тем больше нужно энергии, чтобы извлечь из неё электрон, то есть оторвать его от ядра.

Энергетические уровни многоэлектронного атома

Для заданного главного квантового числа n энергия упорядочена следующим образом: ns<np<nd<nf. Для одного и того же типа орбитали чем больше n, тем выше энергия. Важная особенность многоэлектронных атомов состоит в том, что энергия зависит от двух квантовых чисел: n и l. Квантовое число l называют орбитальным, поскольку оно определяет форму орбитали.

На рис. 11.1 приведена диаграмма энергетических уровней для многоэлектронных атомов. При n=1 существует единственный тип орбитали: l=0 — это s-орбиталь, так что 1s-орбиталь имеет самый низкий уровень энергии. Для n=2 значение l может быть равно 0 или 1. Эти значения l порождают 2s-орбиталь и три различные 2p-орбитали. При l=1 существуют три возможных значения m: m = 1, 0, −1. Тут всё так же, как и у водорода. Важное отличие состоит в том, что у многоэлектронных атомов 2s-орбиталь имеет более низкую энергию, чем 2p-орбитали (см. рис. 11.1). При n=3 существуют 3s-орбиталь, 3p-орбитали и 3d-орбитали. Как видно из рис. 11.1, 3s-орбитали лежат ниже (по энергии), чем 3p-орбитали, которые, в свою очередь, лежат ниже 3d-орбиталей.

Очень важная особенность этого упорядочения энергетических уровней состоит в том, что энергетические уровни с разными значениями квантового числа n перемежаются. Хотя 3d-орбитали лежат выше 3p-орбиталей, энергия 4s-орбитали всё же ниже, чем 3d-орбитали (см. рис. 11.1). Порядок орбиталей также показан на рис. 11.1, где видно, что энергетические уровни следуют в порядке: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d и т. д. Как объясняется далее, перестановка уровней 4s и 3d приводит к появлению первого ряда переходных металлов, а перестановка 5s и 4d порождает второй ряд переходных металлов{16}. Этот порядок очень важен при определении свойств различных атомов. Перестановки в этом порядке и смысл рядов переходных металлов прояснятся после обсуждения Периодической таблицы элементов. Однако сначала надо разобраться, как электроны заполняют энергетические уровни, изображённые на рис. 11.1.

Абсолютный минимум. Как квантовая теория объясняет наш мир i_049.jpg

Рис. 11.1. Диаграмма энергетических уровней для атомов с множеством электронов. Для интервалов между уровнями масштаб не соблюдается. Энергия зависит от главного квантового числа n и орбитального квантового числа l, и в этом заключается отличие от атома водорода (см. рис. 10.1), где энергия зависит только от n. Для n=4 существует одна s-орбиталь (l=0), три различные p-орбитали (l=1), пять различных d-орбиталей (l=2) и семь различных f-орбиталей (l=3)


Перейти на страницу:
Изменить размер шрифта: