Но все это — простейшие изделия микромира. Из углерода и других атомов образуются необычайные молекулы в виде нитей, бус, цепей, сетей, решеток. Они состоят из сотен тысяч атомов и имеют фантастическую величину: некоторые из молекулярных ожерелий, если бы их растянуть, поднялись бы выше облаков микромира, выше здешних гор. Молекул-гигантов множество. Они переплетаются друг с другом, образуют непролазные заросли, настоящие джунгли.

i_058.jpg

Вверху: формула этилена; внизу — формула полиэтилена.

Вот из таких молекул и состоят полимеры. Молекулы можно сделать разные. Разные получаются и полимеры.

Как же рождаются молекулы-гиганты? Ученые придумали множество интереснейших способов их создания. Но мы с тобой не будем углубляться в бесконечные молекулярные джунгли слишком далеко: ведь немудрено и заблудиться. Для начала выберем себе молекулу-ожерелье попроще, вытащим ее из вороха других и рассмотрим, что же нам попало в руки.

Какое, оказывается, длиннющее ожерелье! Сколько, интересно, в нем атомов углерода? Раз, два, три, четыре… двадцать… пятьдесят один… тысяча триста, две тысячи… три… четыре тысячи! А около каждого атома углерода по две водородных бусинки. И никаких других атомов нет… Так что же это? Не полиэтилен ли? Да, он самый. Тот, из которого делают водопроводные трубы, бутылки, расчески, пленку для пищевых мешочков, теплиц и надувных домов.

Как химики сооружают полиэтиленовые молекулы? Ведь действовать так, как мы до сих пор говорили («возьмем еще несколько атомов углерода и нарастим ожерелье…»), можно лишь находясь в микромире. Но химики-то живут в нашем обычном, большом мире, откуда атом углерода не рассмотришь ни в какой самый мощный микроскоп. А уж «взять атом углерода», чтобы нарастить ожерелье, и думать нечего. Как же химики выходят из положения?

Очень остроумно. При переработке нефти выделяется газ этилен (в его молекуле два атома углерода и четыре водорода). Его накачивают в большие прочные аппараты и нагревают до 200 градусов. От такой жары и высокого давления молекулы газа сталкиваются и прочно сцепляются друг с другом. Вместо двух атомов углерода в молекуле получается четыре, потом шесть, восемь, десять, двенадцать — и так далее, пока цепь не вырастет до 4–5 тысяч атомов углерода. Лишь тогда можно считать, что полимер родился. Получается, что из двух тысяч молекул этилена вышла одна большая молекула полиэтилена.

i_059.jpg

Часть макромолекулы полиэтилена.

Кстати, теперь мы можем немного разобраться и в названиях. Вещества, подобные этилену, называют мономерами. «Моно» по-гречески означает «один», «мерос» — «часть». Значит, «мономер» — это «одночастный», то есть вещество, молекула которого представляет собой одну довольно простую частичку. Теперь ясно, что скрывается за словом полимер. Ведь «поли» — это «много». Конечно, полимер — вещество, молекула которого сложена из множества простых частичек. Если эти частички являются молекулами этилена, полимер называют полиэтиленом («многоэтилен»). Когда молекула полимера или — что одно и то же — высокомолекулярного соединения складывается из стирола, получается полистирол, из хлорвинила — полихлорвинил…

ПРОБЛЕМЫ «ВОСПИТАНИЯ»

Но появление полимера на свет — это лишь полдела. Зачастую главные трудности только и начинаются после рождения дитятки-гиганта. Чтобы полимер «вышел в люди», его приходится воспитывать. А надо сказать, большинство полимеров упрямы, капризны, своенравны. И с ними сладить нелегко.

Воспитанием полимеров (между прочим, это выражение я употребляю не для занимательности — таков научный термин) занимаются особые специалисты — физико-химики. Новый полимер снова нагревают, охлаждают, растворяют, воздействуют на него кислотами, щелочами и другими химическими веществами, продавливают через тончайшие отверстия в стальных дисках — фильеры. В результате таких «педагогических мер» у воспитуемого вырабатываются важные качества: гибкость, прочность, сопротивление действию воды и воздуха.

Но посмотрим, как это делается в жизни. Для примера проследим путь красивого, нежного, мягкого волокна — нитрона.

Сначала берут газ метан. Нагревают его в пламени электрической дуги до 1400 градусов. Молекулы метана спаиваются, углерод прикрепляется к углероду, получается новый газ — ацетилен. Его надо быстро охладить, иначе он превратится в сажу. Теперь ацетилен соединяют с синильной кислотой и получают молекулу бесцветной жидкости — акрилонитрил. А из этих молекул (их нужны тысячи) уже можно сложить целое ожерелье: молекулу удивительного полимера — полиакрилонитрила.

Что же дальше? Полимер лежит в колыбели-пробирке — мелкий рыхлый порошок. Он ни на что не способен, ничего не умеет и никому не нужен. Чтобы его оценили люди, он должен многому научиться.

Вот какую школу прошел после своего рождения полиакрилонитрил. Сначала его пытались расплавить, но он оказался к этому неспособным: молекулы его при сильном нагревании распадались на части. В обычных растворителях он не растворялся. После долгих поисков нашли наконец такой растворитель, который был ему по вкусу; попав в него, порошок исчезал без следа. Образовавшуюся густую тягучую массу продавливали через фильеру. Тончайшая струйка раствора полимера попадала в ванну, где из нее вымывался растворитель и она немного затвердевала. Потом загустевшая струйка-паутинка попадала в другую ванну, с кипятком, затем — в третью, тоже с горячей водой. Здесь струйка промывалась снова и снова и вытягивалась в бесконечную, едва заметную нить — волокно нитрон.

Однако дело на этом не кончилось. Волокно надо завить и постричь. Работу парикмахера выполняют машины: одна гофрирует волокно, другая стрижет, режет на кусочки длиной 6-10 сантиметров. Если теперь волокно осторожно высушить, оно получится тонким, нежным, прочным и гибким. Из него можно делать теплые носки и чулки, ткани для костюмов, вязать кофты и джемперы. Мало этого. Инженеры создали машины, которые дают нитроновый мех. Этот мех «растет» в тысячи раз быстрее, чем на овцах, а шубы из него получаются воздушные, теплые и гораздо более красивые.

В этой шубе трудно узнать порошок полимера, родившийся на донышке пробирки…

Полиэтилен более покладист. Но он требует для своего воспитания особых мер: на него надо воздействовать радиоактивными лучами. Воспитанный таким способом, он становится более прочным, лучше изолирует электрические провода, выдерживает жару на 100–150 градусов большую, чем раньше.

Каждый знает, как упаковывают товары: коробки укладывают рядышком, поплотнее друг к другу, заворачивают в бумагу и увязывают шпагатом. Химики тоже, отправляя новый полимер из лаборатории, стараются получше, как они выражаются, упаковать молекулы. Правда, они не пользуются ни оберточной бумагой, ни шпагатом: если удалось уложить молекулы более или менее плотно, они будут держаться друг за друга сами.

Воспитание полимера часто преследует именно эту цель — получше упаковать, уложить молекулярные ожерелья. Зачем это нужно? Оказывается, упаковка молекул полимеров, особенно тех, которые идут на волокно, — вещь чрезвычайно необходимая. У молекул часто бывает много отростков, торчащих во все стороны. Как уложить такие ожерелья аккуратно, друг возле друга, чтобы из молекул получился тугой жгут и, следовательно, прочное волокно? Это очень нелегко. И поэтому волокна, в основном, состоят из беспорядочно собранных вместе молекул.

Но… Ленинградские ученые превратили обыкновенный спирт в волокно винол. Пучок такого волокна толщиной в 1 миллиметр выдерживал груз около сорока килограммов — примерно столько, сколько обычный капрон, лавсан или медная проволока. А потом винол стали воспитывать, молекулярные отростки пригнули, примяли, чтоб они не так топорщились. И уж затем сделали волокно. Оно оказалось в три раза более прочным, чем раньше, и теперь могло сравниться с проволокой из легированной стали.

Почему это произошло? Проведем такой опыт. Возьмем небольшую ветку и попробуем ее сломать. Легко? Очень. Сколько таких веток ты можешь сломать? Двадцать? Сорок? Сто? Сколько угодно! Но при одном условии если ломать ветки по одной.

Теперь возьмем не сто веточек, а всего лишь десять и сложим их вместе, в один пучок (если боковые отростки мешают, их надо примять, пригнуть к главному стволу, чтобы ветки можно было уложить поплотнее друг к другу). Неплохо было бы еще и обмотать пучок бечевкой.

Что же после всех этих трудов у нас получилось? Да конечно — метла! Попробуй теперь сломать метлу… Впрочем, лучше и не пробуй. Из этого ничего не выйдет: десять веточек, когда они сопротивляются тебе дружно, все вместе, оказываются гораздо прочнее целой сотни, взятой разрозненно. Не зря говорят: согласному стаду и волк не страшен.

Или другой пример. Большой комок ваты. Он состоит из множества беспорядочно перепутанных белых хлопковых волоконец. Но разорвать этот ком не представляет никакого труда. А вот если взять этих волоконец в сто раз меньше, чуть-чуть их расправить, расчесать и сделать из них нитку (обыкновенную белую нитку), то она окажется гораздо прочнее большого кома ваты. Потому что волоконца в вате сопротивляются врозь, каждое само по себе, и легко одно за другим рвутся. В нитке же они действуют сообща, помогая друг другу.

Примерно то же происходит и с молекулами. Когда они уложены в волокно беспорядочно, волокно оказывается слабым. А вот если б удалось сделать из молекул волокно-«метлу», то, как считают ученые, можно было бы получать волокна в тысячи раз более прочные, чем те, которые мы вырабатываем сегодня…


Перейти на страницу:
Изменить размер шрифта: