Н. — Подожди, мне будет понятнее, если ты приведешь числовой пример.

Л. — Пожалуйста. Допустим, что источник высокого напряжения дает 200 в. Это напряжение приложено между катодом и сопротивлением в анодной цепи (при этом маленькой величиной падения напряжения на сопротивлении смещения пренебрежем).

Пусть для простоты расчетов анодное сопротивление имеет 100 000 ом, а анодный ток в состоянии покоя составляет 0,6 ма. В этих условиях падение напряжения на сопротивлении будет равно 60 в, а следовательно, между анодом и катодом будет уже не 200, а только 140 в. Условимся также, что напряжение на экранирующей сетке будет равно 100 в. Если теперь к управляющей сетке будет приложено такое переменное напряжение, при котором анодный ток будет изменяться от 0,1 до 1,1 ма, то падение напряжения на сопротивлении будет изменяться от 10 до 110 в. При этом фактическое напряжение на аноде по отношению к катоду будет в свою очередь изменяться от 90 до 190 в.

Из этого примера видно, что напряжение на аноде в некоторые моменты может быть ниже, чем напряжение на экранирующей сетке…

Я вижу, что это не производит на тебя никакого впечатления…

Радио?.. Это очень просто! _198.jpg

Н. — Действительно нет. Но почему все это должно меня беспокоить?

ВТОРИЧНАЯ ЭМИССИЯ

Л. — Из-за своего невежества ты спокойно идешь по краю пропасти. Подумай хорошенько о тех явлениях, которые при этом будут происходить, и ты поймешь, какая неприятность подстерегает нас.

Испускаемые катодом электроны после управляющей сетки на пути к аноду попадают в сферу действия экранирующей сетки. Благодаря высокому положительному напряжению экранирующая сетка сообщает электронам дополнительную скорость, в результате чего последние пролетают через нее с огромной скоростью и, как снаряды, ударяются о поверхность анода. При этом каждый электрон выбивает из материала анода один или несколько электронов подобно тому, как образуется поток брызг при падении пловца в воду.

Эти электроны ведут себя, как и полагается всем электронам, т.е. они притягиваются к наиболее положительному электроду. Нормально таким электродом бывает анод, и выбитые электроны возвращаются в свое жилище, т.е. на анод, ничем не нарушая работы лампы. Но когда более положительной, хотя бы на короткие промежутки времени, станет экранирующая сетка, выбитые из анода электроны устремятся именно к ней.

Н. — Потрясающе!.. Значит, появится ток, который пойдет от анода к экранирующей сетке, а анод в этом случае будет служить вторичным катодом по отношению к экранирующей сетке.

Л. — Безусловно. Это явление называется вторичной эмиссией. И так как ток от анода к экранирующей сетке идет навстречу анодному току, последний уменьшается и искажается.

Н. — Вот мы и снова перед препятствием. Прошу тебя, дунь опять.

Л. — Это нетрудно. Чтобы уничтожить вторичную эмиссию, надо поставить между анодом и экранирующей сеткой еще одну — третью — защитную или антидинатронную сетку. Защитная сетка представляет собой очень редкую спираль, которая находится под потенциалом катода и соединяется с ним иногда даже внутри лампы. Она препятствует удалению вторичных электронов от анода.

Н. — Ну, что же, я рад познакомиться с лампой, имеющей уже пять электродов, которую можно назвать, если меня не обманывают мои познания в греческом языке, пентодом.

Радио?.. Это очень просто! _202.jpg

Л. — Это так. Таким образом, ты можешь заметить, что пентод является усовершенствованием тетрода и что эта лампа была создана для устранения вредного действия вторичной эмиссии.

Вот как выглядит схема усилительного каскада на пентоде (рис. 72). Резисторы R2 и R3, находящиеся между полюсами источника высокого напряжения, служат для установления напряжения на экранирующей сетке, приблизительно равного половине анодного напряжения. Конденсатор С4 служит для того, чтобы пропускать слабый ток высокой частоты, образующийся в цепи экранирующей сетки попадающими на нее электронами.

Радио?.. Это очень просто! _200.jpg

Рис. 72. Схема усилителя высокой частоты на пентоде.

R1C3 — цепь сеточного смещения; R2R3С4 — цепь питания экранирующей сетки.

Н. — Я надеюсь, что экраны, тетроды и пентоды окончательно помогут разрешить проблему паразитных связей.

Л. — Напрасные надежды, Незнайкин!

Радио?.. Это очень просто! _203.jpg

Беседа четырнадцатая

Чем меньше цепи какой-либо лампы связаны с цепями соседних ламп, тем лучше работает радиоприемник. Такой вывод сделали наши друзья после изучения паразитных связей. Помимо рекомендованного ранее экранирования, они рассматривают также возможность применения развязывающих цепей для устранения паразитных связей. Переходя к изучению практической схемы, Любознайкин сообщает интересные сведения о способах переключения настраиваемых контуров,

ЗАПУТАННЫЕ СВЯЗИ
Радио?.. Это очень просто! _204.jpg

Любознайкин. — До сих пор мы говорили только об индуктивной и емкостной связях, но существуют также связи за счет общих элементов, которыми могут оказаться активные и реактивные сопротивления.

Незнайкин. — Я не вижу, где же прячутся эти «общие» сопротивления?

Л. — Вот смотри. На рис. 73 схематически изображен трехкаскадный усилитель высокой частоты.

Для большей ясности на схеме нарисованы только анодные цепи, в которых протекают токи I1, I2 и I3 ламп Л1, Л2 и Л3, соответственно. Цепи управляющих экранирующих сеток опущены. Проследим теперь с карандашом в руке пути электронных потоков ламп.

Ты видишь, что ток I1 от катода лампы Л1 проходит через контур L1С2, потом через участок провода, обозначенный I1, далее через источник высокого напряжения и по «минусовому» проводу возвращается через R1 (резистор смещения) на катод. Теперь проследи таким же образом за анодным током второй лампы I2 Что ты видишь?

Радио?.. Это очень просто! _220.jpg_0

Рис. 73. В этой схеме анодные токи различных ламп идут по общим путям. Источник высокого (анодного) напряжения Ua условно изображен, как сопротивление.

Н. — Действительно, ток I2 часть своего пути проходит по тем же участкам цепи, что и ток I1, а также через источник высокого напряжения. То же происходит и с током I3, проходящим через источник высокого напряжения и участки I1 + I+ I3, по которым протекают одновременно три тока. Вот где возникает мешанина и путаница токов!

Л. — Если бы источник высокого напряжения и соединительные цепи не имели сопротивления, можно было бы не бояться никакой мешанины. Но, к несчастью, это не так: каждый из токов вызывает на сопротивлениях общих участков падение напряжения. Постоянные составляющие не представляют никакой опасности. Но напряжения переменных составляющих, образующиеся на общих участках сопротивлений, попадают в другие цепи, в результате чего падение напряжения от переменной составляющей тока I1 будет приложено между катодом и анодом ламп Л2 и Л3. То же будет и с напряжениями от токов I2 и I3.


Перейти на страницу:
Изменить размер шрифта: