Как и во всяком сопротивлении, анодный ток диода зависит от напряжения, приложенного между катодом и анодом, — анодного напряжения, примерно подчиняясь закону Ома. Ток повышается пропорционально напряжению, но только до некоторой определенной величины; последующее повышение напряжения не влечет за собой увеличения тока, так как все излученные катодом электроны уже участвуют в анодном токе. Как говорят в таких случаях, ток достигает насыщения. Практически явление насыщения, как оно только что было описано, характерно лишь для катодов прямого накала.

Триод

Через 2 года после изобретения диода американцу Ли де Форесту пришла в голову идея поместить между катодом и анодом третий электрод — сетку. Сетка представляет собой решетку или цилиндрическую спираль, окружающую катод. В трехэлектродной лампе или триоде сетка расположена на пути электронов, что позволяет ей регулировать поток электронов. В этом случае электрический ток зависит не только от анодного напряжения, но также и от потенциала сетки по отношению к катоду

Чем больше отрицательный потенциал сетки, тем больше тормозит она поток электронов, тем больше электронов отталкивает она обратно к катоду и тем меньшему количеству электронов, притягиваемых анодом, удается пробить себе дорогу. Если потенциал сетки достаточно отрицателен, то, несмотря на притяжение анода, она не пропустит ни одного электрона и ток будет равен нулю.

Уменьшая отрицательный потенциал сетки, мы заметим появление тока, увеличивающегося с повышением потенциала сетки (так как уменьшение отрицательного значения является повышением потенциала).

В триоде замечательно то, что влияние, оказываемое на анодный ток сеткой, значительно больше влияния, оказываемого анодом. Малого изменения потенциала сетки достаточно для создания большого изменения анодного тока.

Если мы будем поддерживать потенциал сетки постоянным и захотим добиться такого же изменения анодного тока путем изменения анодного напряжения, то нам придется изменять его в значительно больших пределах. Впрочем, это легко объясняется тем, что сетка находится ближе к катоду, чем анод. Именно на этом основана усилительная способность лампы.

Крутизна

Изменение анодного тока, вызываемое определенным изменением потенциала сетки, характеризует крутизну лампы. Крутизна выражается в миллиамперах на вольт (мa/в). Количественно крутизна показывает, на сколько миллиампер увеличивается (или уменьшается) анодный ток при увеличении (или уменьшении) потенциала сетки на 1 в. Применяемые в настоящее время лампы имеют крутизну от 1 до 15 ма/в.

Если через dIa мы обозначим изменение анодного тока, а через dUc — изменение потенциала сетки, то крутизна, обозначаемая буквой S, будет иметь следующее выражение:

S = dIa/dUc

Коэффициент усиления

Мы только что сказали, что для получения одинакового изменения анодного тока анодное напряжение нужно изменить больше, чем напряжение сетки.

Отношение этих двух напряжений носит название коэффициента усиления, обозначаемого буквой μ. Если, например, для повышения тока на 1 ма нужно повысить анодное напряжение на 28 в или повысить напряжение сетки на 2 в, то коэффициент усиления будет равен 28: 2 = 14.

Коэффициент усиления триодов редко превышает 100, но у многоэлектродных ламп он часто достигает нескольких тысяч.

Обозначив изменение анодного напряжения через dUa, получим следующую формулу для коэффициента усиления:

μdUa/dUc

Внутреннее сопротивление

Существует еще третий параметр, обойденный Любознайкиным молчанием, но который полезно знать; называется он внутренним сопротивлением лампы. Вспомнив закон Ома, согласно которому сопротивление выражается отношением напряжения к току, мы не удивимся, узнав, что сопротивление лампы определяется как отношение изменения анодного напряжения к вызываемому им изменению анодного тока. Обозначив внутреннее сопротивление буквой Ri, мы получим:

RidUa/dIa

Соотношение между S, μ и Ri

Следует отметить, что крутизна и внутреннее сопротивление данной лампы могут изменяться в некоторых пределах в зависимости от потенциала сетки; коэффициент усиления же практически не зависит от напряжения на электродах, так как он определяется размерами электродов и их расположением.

Не ради удовольствия нагромождать формулы мы только что привели математические выражения для S, μ и Ri. Эти выражения позволяют вывести очень простое соотношение, объединяющее все три величины. Умножим S на Ri

Радио?.. Это очень просто! _408.jpg

Как мы видим, коэффициент усиления равен произведению крутизны на внутреннее сопротивление. Если крутизна выражена в миллиамперах на вольт, то внутреннее сопротивление нужно выразить в тысячах вольт, в противном случае получатся нелепые результаты.

Благодаря выведенному соотношению достаточно знать две величины, чтобы рассчитать третью. Так, например, если крутизна лампы 3 ма/в, а ее внутреннее сопротивление 80 000 ом, то без труда можно рассчитать коэффициент усиления:

μ = 3·80 = 240.

Комментарии к восьмой беседе

Сеточная характеристика лампы

В триоде, как вы видели, величина анодного тока зависит от сеточного и анодного напряжений, правда не в одинаковой мере. Первое имеет большее влияние, чем второе.

Можно графически представить зависимость анодного тока Iа от сеточного напряжения Uc или анодного напряжения Uа. При изображении зависимости Iа от Uc следует поддерживать анодное напряжение Uа постоянным и, последовательно придавая сеточному напряжению Uc различные значения (в порядке нарастания или снижения), отмечать соответствующие значения анодного тока Iа.

Нанесем на клетчатой бумаге две взаимно перпендикулярные оси и отметим на горизонтальной оси значения сеточного напряжения, а на вертикальной — анодного тока. Точку пересечения двух осей будем считать нулем; отрицательные величины сеточного напряжения будем откладывать слева от этой точки, а положительные — справа (см. рис. 31).

Каждой паре значений Uc и Iа будет соответствовать одна точка на пересечении двух перпендикуляров к осям. Например, если сеточному напряжении —1 в соответствует анодный ток 4 ма, то точку для этих значений мы получим следующим образом: перпендикуляр к горизонтальной оси проведем через точку — 1 в, а перпендикуляр к вертикальной оси — через точку 4 ма (первый перпендикуляр, следовательно, будет вертикальной, а второй — горизонтальной линией). Точка пересечения этих перпендикуляров определит соответствующую точку характеристики.

Нанесем таким образом несколько точек и соединим их. Такая кривая показывающая зависимость анодного тока от сеточного напряжения, будет называться сеточной характеристикой лампы. По мере уменьшения отрицательного напряжения на сетке ток возрастает, сначала медленно, а затем— посте нижнего изгиба — быстрее; в этой области характеристики имеется прямолинейный участок, в пределах которого анодный ток пропорционален сеточному напряжению. Дальше характеристика вновь изгибается, особенно у ламп прямого накала, имеющих ярко выраженное явление насыщения.


Перейти на страницу:
Изменить размер шрифта: