Жирные кислоты с нечетным числом углеродных атомов на конечном этапе β-окисления образуют ацетил-КоА и пропионил-КоА. Трехуглеродный фрагмент в ходе трех реакций превращается в сукцинил-КоА – метаболит ЦТК.
Ацетил-КоА, образующийся при β-окислении жирных кислот, расщеплении кетогенных аминокислот и окислительном декарбоксилировании пирувата служит исходным субстратом для ряда важнейших метаболических путей:
1. окисление в ЦТК
2. образование кетоновых тел
3. биосинтез холестерола
4. биосинтез жирных кислот.
Обмен кетоновых тел
При голодании, длительной физической нагрузке и в случаях, когда клетки не получают достаточного количества глюкозы (желудочно-кишечные расстройства у детей, диета с низким содержанием углеводов, почечная глюкозурия, сахарный диабет), в жировой ткани активируется распад жиров. Жирные кислоты поступают в печень в большем количестве, чем в норме, увеличивается скорость b-окисления. Активность ЦТК в этих условиях снижена, так как ЩУК используется для глюконеогенеза. В результате скорость образования ацетил-КоА превышает способность ЦТК окислять его. Ацетил-КоА накапливается в митохондриях печени и используется для синтеза ацетоацетата. Это вещество может выделяться в кровь или превращаться в печени в другое кетоновое тело – b-гидроксибутират путем восстановления. В клетках печени при активном b-окислении создается высокая концентрация НАДН. Это способствует превращению большей части ацетоацетата в b-гидроксибутират, поэтому основное кетоновое тело крови – именно b-гидроксибутират. При высокой концентрации ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон. Ацетон не утилизируется тканями, но выделяется с выдыхаемым воздухом и мочой. Таким путем организм удаляет избыточное количество кетоновых тел, которые не успевают окисляться, и вызывают ацидоз, так как являются кислотами. Скорость синтеза кетоновых тел зависит от активности 3-гидрокси-3-метилглутарил-КоА-синтазы (ГМГ-КоА-синтазы). Это индуцируемый фермент, его синтез увеличивается при повышении концентрации жирных кислот в крови. ГМГ-КоА-синтаза ингибируется высокими концентрациями свободного КоА. В норме образуется небольшое количество кетоновых тел (их содержание в крови составляет 10–30 мг/л, т.е. до 0,2 ммоль/л). В печени ацетоацетат не может окисляться, поэтому с током крови он попадает в скелетные мышцы, сердце, мозг, которые способны превращать ацетоуксусную кислоту вновь в ацетил-КоА.
Содержание кетоновых тел в крови увеличивается тогда, когда основным источником энергии для организма служат жирные кислоты – при длительной мышечной работе, голодании, сахарном диабете.
Рис. 20.2. Образование, утилизация и выведение кетоновых тел (главный путь показан непрерывными стрелками)
Увеличение концентрации кетоновых тел в крови называют кетонемией, выделение кетоновых тел с мочой – кетонурией. Накопление кетоновых тел в организме приводит в кетоацидозу: уменьшению щелочного резерва, а в тяжелых случаях – к сдвигу рН, так как b-гидроксибутират и ацетоацетат являются водорастворимыми органическими кислотами, способными к диссоциации. Ацидоз достигает опасных величин при сахарном диабете. Содержание кетоновых тел в крови при этом заболевании увеличивается в 100 и более раз, достигая концентрации 4–5 г/л. Тяжелая форма ацидоза – одна из основных причин смерти при сахарном диабете.
Синтез жирных кислот
Синтез жирных кислот происходит в основном в печени, в меньшей степени – в жировой ткани и лактирующей молочной железе. Гликолиз и последующее окислительное декарбоксилирование пирувата способствуют увеличению концентрации ацетил-КоА в матриксе митохондрий. Синтез же жирных кислот происходит в цитозоле, куда и должен быть транспортирован субстрат. Для этого в матриксе митохондрий ацетил-КоА конденсируется со ЩУК с образованием цитрата. Затем транслоказа переносит цитрат в цитоплазму. Это происходит только при увеличении количества цитрата в митохондриях, когда изоцитратдегидрогеназа и α-кетоглутаратдегидрогеназа ингибированы высокими концентрациями НАДН и АТФ. Такая ситуация создается в абсорбтивном периоде, когда клетка печени получает достаточное количество источников энергии. В цитоплазме цитрат расщепляется до ЩУК и ацетил-КоА. Последний служит исходным субстратом для синтеза жирных кислот, а ЩУК под действием малатдегидрогеназы превращается в малат, который при участии малик-фермента образует пируват. Пируват транспортируется обратно в матрикс митохондрий.
Первая реакция синтеза жирных кислот – превращение ацетил-КоА в малонил-КоА, осуществляемое ацетил-КоА-карбоксилазой, определяет скорость всех последующих реакций синтеза жирных кислот.
Далее синтез жирных кислот продолжается на мультиферментном комплексе – синтазе жирных кислот. Этот фермент состоит из 2 идентичных протомеров, каждый из которых имеет доменное строение и, соответственно, 7 центров, обладающих разными каталитическими активностями (ацетилтрансацилаза, малонилтрансацилаза кетоацилсинтаза, кетоацилредуктаза, гидратаза, еноил-редуктаза, тиоэстераза) и ацилпереносящий белок (АПБ). АПБ не является ферментом, его функция связана только с переносом ацильных радикалов. В процессе синтеза важную роль играют SH-группы. Одна из них принадлежит 4-фосфопантетеину, входящему в состав АПБ, вторая – цистеину кетоацилсинтазы. Протомеры синтазы жирных кислот расположены «голова к хвосту». Несмотря на то, что каждый мономер содержит все активные центры, функционально активен комплекс из двух протомеров. Поэтому реально синтезируются одновременно 2 жирных кислоты (в схемах для упрощения изображают синтез только одной молекулы).
Этот комплекс последовательно удлиняет радикал жирной кислоты на 2 углеродных атома, донором которых служит малонил-КоА. Циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту. В каждом цикле биосинтеза пальмитиновой кислоты проходят 2 реакции восстановления, донором водорода в которых служит НАДФН.
Регуляция синтеза жирных кислот.
Регуляторный фермент синтеза жирных кислот – ацетил-КоА-карбоксилаза.
Его активность регулируется двумя способами.
1. Ассоциация/диссоциация комплексов субъединиц. В неактивной форме ацетил-КоА-карбоксилаза представляет собой отдельные комплексы, каждый из которых состоит из 4 субъединиц. Активатор фермента – цитрат – стимулирует объединение комплексов, ингибитор – пальмитоил-КоА – вызывает их диссоциацию.
2. Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. В постабсорбтивном состоянии или при физической работе глюкагон или адреналин через аденилатциклазную систему активируют протеинкиназу А и стимулируют фосфорилирование субъединиц ацетил-КоА-карбоксилазы. Фосфорилированный фермент неактивен, синтез жирных кислот останавливается. В абсорбтивный период инсулин активирует фосфатазу, и ацетил-КоА-карбоксилаза переходит в дефосфорилированное состояние. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным.
Ещё одним способом усиления синтеза жирных кислот является индукция синтеза ферментов этого метаболического пути. Такое происходит при длительном потреблении богатой углеводами и бедной жирами пищи, когда инсулин стимулирует индукцию синтеза ацетил-КоА-карбоксилазы, синтазы жирных кислот, цитратлиазы и изоцитратдегидрогеназы.
Из пальмитиновой кислоты могут синтезироваться более длинные, а также ненасыщенные жирные кислоты.