Что произойдет, если мы рассмотрим онтогенез не одного, а двух (или более) соседних единств в среде взаимодействия? Это можно изобразить следующей диаграммой:
Разумеется, описанную ситуацию можно рассматривать с точки зрения любого из единств, и она будет симметричной. Это означает, что для клетки, расположенной слева, клетка справа представляет собой лишь еще один источник взаимодействий, неотличимый от тех, которые мы как наблюдатели классифицируем как приходящие от «инертной» окружающей среды. Наоборот, для клетки, расположенной справа, клетка слева представляет собой лишь еще один источник взаимодействий, испытываемых клеткой справа в соответствии с ее собственной структурой.
Это означает, что два (или более) аутопоэзных единства могут претерпевать взаимосвязанные онтогенезы, если взаимодействия между ними носят рекуррентный или более стабильный характер. Это следует ясно себе представлять. Каждый онтогенез происходит в какой-то окружающей среде; как наблюдатели мы можем описать и онтогенез, и окружающую среду как обладающие определенными структурными характеристиками, например, диффузией, секрецией, температурой. При описании аутопоэзного единства как имеющего конкретную структуру нам станет ясно, что взаимодействия (покуда они рекуррентны) между единством и окружающей средой состоят из взаимных возмущений. В такого рода взаимодействиях структура окружающей среды только запускает структурные изменения в аутопоэзных единствах (но не определяет их и не управляет ими), и наоборот, структурные изменения в аутопоэзных единствах вызывают структурные изменения в окружающей среде. В результате мы получаем историю взаимных конгруэнтных структурных изменений, продолжающихся до тех пор, покуда аутопоэзное единство и вмещающая его окружающая среда не распадутся: возникает структурное сопряжение.
Рис. 20. Жизненный цикл миксомицета (слизевика) Physarum, включающий формирование плазмодия в результате слияния клеток
Среди всех возможных взаимодействий между системами существуют такие, которые имеют явно выраженный рекуррентный, или повторяющийся, характер. Например, если мы взглянем на клеточную мембрану, то заметим, что через клетку осуществляется постоянный транспорт некоторых ионов (например, ионов натрия или кальция), причем клетка реагирует на присутствие этих ионов, включая их в свою метаболическую сеть. Активный транспорт ионов происходит регулярно, и мы как наблюдатели можем сказать, что структурное сопряжение клеток с внутренней или окружающей средой позволяет им рекуррентно взаимодействовать с теми ионами,
Рис. 21. Жизненный цикл миксомицета (слизевика) Dictyostelium с плодовым телом, образующимся путем объединения клеток, которые возникают в результате репродукции исходной споровой клетки (масштаб не соблюден) которые там содержатся. Именно клеточное структурное сопряжение позволяет клеткам взаимодействовать только с некоторыми ионами, так как если во внутреннюю среду клетки проникнут другие ионы (например, ионы цезия или лития), то структурные изменения, которые они вызовут в клетке, прервут ее аутопоэз.
Почему же в клетках каждого типа аутопоэз происходит только при вполне определенном виде регулярного и рекуррентного взаимодействия и не происходит при других взаимодействиях? Ответ на этот вопрос может быть дан только со ссылкой на филогению, или историю соответствующей линии клеток, иначе говоря, тип структурной связи каждой клетки в данный момент есть существующее на данный момент состояние истории структурных преобразований в рамках той филогении, которой принадлежит данная клетка. Иными словами, момент в естественном дрейфе наследственной линии, о котором идет речь возникает вследствие сохранения структурного сопряжения предшествующих клеток в той же наследственной линии. Так, в приведенном выше примере в данном состоянии клеточного естественного дрейфа мембраны функционируют осуществляя транспорт ионов натрия и кальция, но не каких-либо других ионов.
Структурное сопряжение со средой как условие существования охватывает все возможные клеточные взаимодействия. Следовательно, оно включает в себя и взаимодействия с другими клетками. Клетки многоклеточных систем нормально функционируют, только привлекая ближайшее клеточное окружение в качестве среды для реализации своего аутопоэза. Такие системы возникают в результате естественного дрейфа наследственных рядов, в которых удавалось сохранять ближайшее клеточное окружение.
Превосходным источником примеров, особенно убедительно подтверждающих сказанное, может служить группа одноклеточных организмов, известных под названием миксомицетов. Например, когда спора миксомицета Physarum начинает развиваться, возникает клетка (рис. 20, вверху). Если окружающая среда влажная, то у клетки вырастает жгутик, и она обретает подвижность. Если же окружающая среда сухая, то у клетки развиваются ложноножки, и она становится похожей на амебу. Затем эти две разновидности клеток делятся и порождают множество других клеток; удерживаемые структурным сопряжением, эти клетки сливаются и образуют плазмодий, который, в свою очередь, формирует макроскопическое плодоносящее тело, вырабатывающее споры (см. рис. 21).
У таких филогенетически древних эукариот тесная клеточная агрегация достигает своей кульминации в новом единстве, когда в результате слияния клеток образуется плодоносящее тело. Оно представляет собой метаклеточное единство, существование которого исторически составляется клетками, порождающими его в завершение жизненного цикла того органического единства, которому принадлежит данное многоклеточное единство (и которое определяется указанным жизненным циклом). При этом необходимо четко понимать, что формирование метаклеточных единств, способных давать начало ряду поколений путем репродуцирования через отдельные клетки, порождает феноменологию, отличную от феноменологии образующих их клеток. Такое метаклеточное единство, или единство второго порядка, будет иметь структурное сопряжение и онтогенез, адекватные ее структуре как составного единства. В частности, метаклеточные системы, аналогичные описанной выше, обладают макроскопическим онтогенезом, а не микроскопическим, присущим образующим их клеткам.
Более сложную ситуацию можно рассмотреть на примере другого миксомицета. Dictyostelium (рис. 21)[6]. В этой группе, если окружающая среда обладает некоторыми специфическими свойствами, амебоподобные особи собираются в плодоносящее тело, как в предыдущем примере. Хотя отдельные клетки при этом не сливаются, но и в этой группе мы обнаруживаем, что единства ьторого порядка демонстрируют отчетливо выраженное разнообразие клеточных типов. Например, клетки на верхнем конце плодоносящего тела порождают споры, в то время как клетки у основания, не обладая такой способностью, заполняются вакуолями и перегородками, которые служат механической опорой для всей метаклеточной системы. На этом примере мы видим, что в динамизме такой тесной клеточной агрегации в ее жизненном цикле структурные изменения, претерпеваемые каждой клеткой в истории ее взаимодействий с другими клетками, взаимно дополнительны при ограничениях, налагаемых участием клеток в образуемом ими метакле-точном единстве. Именно поэтому онтогенетические структурные изменения каждой клетки с необходимостью отличаются в зависимости от того, каким образом те или иные клетки участвуют через свои взаимодействия и отношения с соседними клетками в образовании единства второго порядка.
Мы подчеркиваем, что тесная агрегация клеток, происходящих от одной клетки, агрегация, которая превращается в метаклеточное единство, есть условие, которое согласуется с непрерывным аутопоэзом зтих клеток. Однако такие клеточные скопления не являют ся биологически необходимыми, поскольку многие организмы на протяжении долгой истории своего существования оставались одноклеточными. В тех же наследственных рядах где клеточная агрегация произошла, она привела к глубоким последствиям для соответствующих историй структурных преобразований. Рассмотрим эту ситуацию более подробно.
6
Bonner J.T. Proceedings of the National Academy of Science USA. 45 (1959): 379.