Операциональная замкнутость нервной системы
Как было сказано, поведение — это производимое наблюдателем описание изменений состояния системы относительно окружающей среды, с которой взаимодействует данная система Мы говорим также, что нервная система не создает поведение, а необычайно его расширяет Необходимо пояснить, что мы имеем в виду под «расширением». Это значит, что нервная система возникает в филогенетической истории живых существ как сеть специализированных клеток (нейронов), включенная в организм таким образом, что она связывает точки сенсорных поверхностей с точками моторных поверхностей. Таким образом, с помощью нейронной сети, обеспечивающей такие связи, число возможных сенсомоторных корреляций в организме увеличивается и область поведения расширяется.
Как теперь стало ясно, сенсорная поверхность включает в себя не только те клетки, которые мы видим извне как рецепторы, способные воспринять возбуждение, поступающее из внешней среды, но и клетки, которые может возбудить сам организм, в том числе нейронная сеть. Например, в некоторых артериях имеются хеморецепторные клетки, способные реагировать на изменения концентрации кислорода в крови позвоночных. В свою очередь, такие клетки воздействуют на некоторые нейроны, изменяя их активность, и тем самым влияют на состояние всей сети, что приводит к изменениям в ритме активности дыхательных мышц, а это сказывается на уровне кислорода в крови. Таким образом, нервная система функционирует как механизм, поддерживающий в определенных пределах структурные изменения многоклеточного организма Осуществляс ί ся это через многочисленные цепи нейронной активности, Структурно связанные со средой. В этоы смысле можно сказать, что нервная система характеризуется наличием операциональной замкнутости. Иначе говоря, нервная система организована как сеть активных компонент, и любое изменение соотношений активности в ней приводит к дальнейшим изменениям соотношений активности. Некоторые из этих соотношений остаются инвариантными при непрерывных возмущениях, обусловленных и собственной динамикой нервной системы, и взаимодействиями организма, который она объединяет в целое.
Иначе говоря, нервная система функционирует как замкнутая сеть изменений в соотношениях активности между ее компонентами.
Таким образом, испытывая надавливание в какой-либо части тела, мы как наблюдатели можем сказать: «Ага! Сокращение вот этой мышцы заставит меня поднять руку». Но с точки зрения функционирования самой нервной·системы (вспомним нашу аналогию с человеком на борту подводной лодки) происходящее всецело сводится к постоянному поддержанию определенных соотношений между сенсорными и моторными элементами, испытавшими временное возмущение в результате надавливания. Поддерживаемые соотношения в рассматриваемом случае довольно просты: это баланс между сенсорной активностью и мышечным тонусом. Трудно описать в нескольких словах, что именно определяет баланс мышечного тонуса по отношению к остальной активности, нервной системы но, как правило, все поведение есть не что иное, как внешнее проявление пляски внутренних взаимосвязей организме. Задача, с которой сталкивается исследователь, — найти в каждом случае точные механизмы таких нейронных связей.
Рис 48 Относительные размеры головного мозга У различных животных
У кишечнополостных (гидры) нервная система равномерно распределена по всему организму. У других животных, в том числе у млекопитающих, это не так. В процессе трансформации нервной системы в истории развития живых сущес t в прослеживаются две основные тенденции: (I) объединение нейронов в компактную структуру (нервный тяж) и (2) сосредоточение большей части объема нейронов в головном конце (цефаяизация). : Так, у сегментированных животных, например, i у земляных червей, нервная система пред-: ставляет собой Труппы клеток, собранные в нервные узлы — ганглии, расположенные в каждом сегменте тела животного; однако эти ганглии уже связаны со слабо выраженным головным нервным узлом. У других животных концентрация нейронов в головном конце может быть огромной, как это отчетливо видно на примере осьминогов и в еще большей мере — человека.
Сказанное свидетельствует, что по мере того, как растет число различных способов нейронных взаимодействий и вследствие этого увеличивается головной отдел нервной сис-темы, функции нервной системы становятся необычайно разнообразными. Это хорошо видно на примере филогенетических древ позвоночных, моллюсков и насекомых. Иначе говоря, увеличение массы головного мозга существенно расширяет возможности организма, связанные с его структурной пластичностью. Это имеет первостепенное значение
Сказанное выше показывает, что функционирование нервной системы полностью согласуется с ее основополагающей ролью автономного единства, в котором каждое состояние активности приводит к другому состоянию активности того же единства, поскольку его функционирование носит круговой характер, или характеризуется операциональной замкнутостью. Таким образом, собственная структура нервной системы не нарушает, а усиливает операциональную замкнутость, которая определяет автономную природу живого существа. Мы начинаем ясно понимать, каким образом каждый когнитивный процесс непременно базируется на существовании организма как единства и на операциональной замкнутости его нервной системы. Следовательно, любое познание есть не что иное, как создание сенсорно-эффекторных корреляций в области структурного сопряжения нервной системы.
Пластичность
Мы уже несколько раз упоминали о том, что нервная система находится в состоянии непрерывного структурного изменения, т. е. обладает гластичностью. Действительно, пластичность — важнейшее свойство, влияющее на структуру организма И именно вследствие своей структурной пластичности нервная система, посредством своих сенсорных и эффекторных органов, вовлеченных во взаимодействия организма, осуществляющие отбор его структурных изменений, — участвует в структурном дрейфе организма с сохранением его адаптации.
Обычно структурное изменение нервной системы не влечет за собой радикальной перестройки всей системы связей. В целом связи системы инвариантны, и, как правило, они одинаковы у всех особей одного вида. При формировании взрослой особи из оплодотворенной зиготы, в процессе развития и клеточной дифференциации, по мере увеличения числа нейронов они начинают ветвиться и соединяться в соответствии со структурой, присущей данному виду. Как именно происходит этот процесс уникальной локальной детерминации — одна из интереснейших загадок современной биологии.
Где же происходят структурные изменения, если не в линиях связи? Ответ в том, что структурные изменения действительно происходят, но не в соединениях, которые объединяют группы нейронов, a в локальных характеристиках таких соединений. Иначе говоря, изменения происходят в конечных разветвлениях и в синапсах. Там молекулярные изменения приводят к изменениям в эффективности синаптических взаимодействий, которые могут существенно сказвться нв функционировании всей нейронной сети
В качестве примера рассмотрим следующий эксперимент. Найдем одну из больших мышц, двигающих ногой мыши, выделим нерв, идущий к этой мышце от спинного мозгв, и перережем его, а звтем дадим животному оправиться после перенесенной операции. При вскрытии прооперированной мыши мы обнаружим, что мышца, к которой подходил перерезанный нерв, атрофировалась и сталв короче, хотя кровоснабжение и питание мышцы остввались без изменений. Все, что мы сделали — прервали электрический и химический транспорт, обычно существующий между мышцей и подходящим к ней нервом. Если мы дадим нерву вырасти снова и иннервировать мышцу, то она восстановится и втрофия исчезнет. Другие эксперименты показывают, что нечто подобное наблюдается между большинством (если не всеми) элементами, образующими нервную систему. Уровень активности и химический транспорт между двумя клетками, в данном случае мышечным волокном и нейроном, модулируют эффективность и способ взаимодействия между ними в процессе их непрерывного изменения. Перерезвв нерв, мы продемонстрировали эту динамическую особенность весьма наглядно.