Вместе с этим для установления внутренней взаимосвязи машин в производственных процессах технологического потока со свойствами разрабатываемого скального массива и горной массы, а также для оценки комплектов перспективной техники и для определения эффективности новой технологии предлагается использовать принципиальную сторону энергетического метода исследования. В основе его лежит закон сохранения энергии, открытый М.В. Ломоносовым.

Применительно к методу исследования производственных процессов в горном деле этот закон можно выразить следующим образом: энергия, используемая в процессе горного производства, равна работе преодоления сопротивления материалов требуемому качественному изменению и перемещения их в пространстве.

Для открытых горных работ сущность этого метода заключается в том, что для производства горных работ на карьере при определенной технике и технологии необходимо затратить энергию на дробление массива для получения требуемого состава горной массы по крупности и степени разрыхления, выемку и погрузку породы, перемещение и укладку ее в отвал для вскрыши или переработку для полезного ископаемого.

При этом энергия расходуется на преодоление сопротивления рабочих органов самих машин в технологических процессах и для совершения полезной работы по переводу объекта приложения энергии (горной породы) из одного состояния в другое.

Расход первой части энергии учитывается коэффициентом полезного действия передачи энергии от источника к рабочим органам и коэффициентом полезного действия самих рабочих органов.

Расход второй части энергии зависит от технологии процесса и определяется свойствами горной породы, степенью изменения качества и состояния в процессе воздействия на неё.

Изменение качества, обусловленное технологией и на карьерах породами, представляет собой разрушение массива и создание разрыхления горной массы, подъем для погрузки, перемещение и т.п.

Вторая часть энергии, которая как бы “поглощается” горной породой в процессе производства, называется технологическим энергопоглощением. Оно измеряется в джоулях (Ет =F × L - сила на путь). Сила (F) измеряется в ньютонах, путь (L) - в метрах.

Применительно к горному производству под энергопоглощением горной породой понимается расход полезной энергии для превращения массива в горную массу требуемого состава по крупности, подъёме её на высоту, перемещение и укладку в отвал для пустых пород и переработку для полезного ископаемого. При этом во время дробления массива энергия расходуется на преодоление природных сил сопротивления разрушению, при подъёме – преодоление сил гравитации, при перемещении – преодоление сопротивления движению.

Использование понятия «поглощение энергии» вместо «расход энергии» позволяет конкретизировать то обстоятельство, что расходуется полезная, а не фактически затрачиваемая энергия, выражая собой закон перехода количества энергии в качество горной массы и её перемещение.

Величина энергопоглощения зависит от свойств горных пород и от технологических параметров производственного процесса.

В расчетной зависимости энергопоглощения в общем виде свойства горных пород выражаются через сопротивление, оказываемое рабочему органу машины, а технологические параметры через путь, который рабочий орган преодолевает, это сопротивление и производит определенное количество продукции, заданного технологией качества

,

где Эт - удельное технологическое энергопоглощение Дж/кг;

F- сопротивление, оказываемой горной породой, Н;

L - величина пути, на котором преодолевается сопротивление горной породы, м;

Р - количество продукции, произведенный в рабочий цикл, кг

Основное сопротивление горной породы оказывают: в процессе подготовки горных пород к выемке - молекулярные связи, плотность горных пород и физическое состояние массива. В процессе выемки и погрузки - связанность, объемный вес, зацепление кусков горной породы, состав по крупности, трение. В процессе перемещения - объемный вес, связанность горной массы, трение. При отвалообразовании - объемный вес, зацепление, трение. При переработке - молекулярные связи, петрографический состав и плотность.

Некоторые из перечисленных свойств горных пород не являются постоянными, а изменяются под воздействием окружающей среды. Например, связанность горной массы и сопротивление внедрению ковша увеличиваются в результате слеживания горной массы, смерзаемости, заснеженности и т.д.

Некоторые свойства являются результатом принятой технологии или качеством выполнения работ в предыдущих процессах, например, состав горной массы по крупности, зацепление, степень разрыхления и т.п.

Общее энергопоглощение горной массы будет представлять собой сумму энергопоглощений по процессам технологического потока.

Вследствие того, что энергопоглощение зависит как от свойств горных пород, так и от технологических параметров, появляется возможность сравнивать между собой в аналогичных условиях различные комплекты оборудования технологических потоков или отдельные их звенья и выбирать вариант с меньшими значениями как наиболее эффективный.

В конкретных природных условиях месторождения или отдельной природно-технологической зоны карьера в сравнительных расчётах для выбора варианта с меньшим энергопоглощением комплекта оборудования технологического потока или технологии горных работ целесообразно пользоваться показателем энергопоглощения единицей горной массы (удельное энергопоглощение )

Для расчетных зависимостей определения энергопоглощения необходимо рассмотреть взаимосвязь свойств горных пород с технологией производства работ по процессам в технологическом потоке.

В настоящие время широко развиваются исследования по физике горных пород. Накопление данных о свойствах горных пород в массиве, образце и разрыхленном состоянии и их сопротивлении при добывании позволяет использовать их в энергетическом методе исследования горных работ на карьерах.

2.2. Энергопоглощение по процессам технологического потока.

Процесс подготовки горных пород к выемке.

Это первый процесс технологического потока. Мягкие горные породы не требуют специальной подготовки к выемке, а массив крепких (скальных и полускальных) требует предварительного разрушения и дробления для обеспечения следующего процесса – экскавации.

Энергопоглощение горных пород при дроблении зависит от молекулярных сил связи, дислокаций кристаллической структуры горных пород и нарушенности массива под действием эрозионных разрушений, естественной трещиноватости (блочности) и трещинообразования от сейсмического воздействия предшествующих взрывных работ на уступе.

Расходуемая при взрыве массива кинетическая энергия продуктов взрывчатого вещества переходит в потенциальную энергию вновь создаваемых поверхностей и другие формы - тепло, звук и сейсмические волны.

Энергопоглощение монолитных, не нарушенными трещинами зон массива или отдельного блока, при разрушении взрывом, подчиняется теории Риттингера, согласно которой работа дробления полностью переходит в поверхностную энергию и равна

где W - работа измельчения, Дж;

D и d - размеры кусков до и после дробления;

k1 - постоянная величина.

Если принять отношение как степень измельчения, то формула будет иметь вид

По теории Кирпичева-Кика работа, требуемая для изменений конфигураций геометрически подобных тел из одинакового материала, изменяется пропорционально объемам или весам этих тел. В общей формуле закон Кика выражается:

По теории Бонда работа, расходуемая на дробление материала от размера D до размера d, равна разнице количеств суммарной энергии, необходимой для того, чтобы довести размер материала от теоретически бесконечного до размеров D и d. Эта теория является промежуточной между теориями Риттингера и Кика. В ней предполагается, что энергия, передаваемая телу при сжатии, распределяется сначала по его массе и, следовательно, пропорциональна D3 , но с момента начала образования на поверхности трещины эта энергия концентрируется на поверхности краев трещины и тогда она пропорциональна D2. На этом основании применяется, что работа разрушения тела пропорциональна D2,5 и, следовательно, удельная работа дробления выражается формулой


Перейти на страницу:
Изменить размер шрифта: