Ламарк, Тиндаль были в той первой шеренге ученых, которые начинали понимать смысл различия двух подходов к проблеме зарождения живого. Надо сказать, что подобные спутывания этих, внешне похожих, а по сути совершенно разных представлений нередко встречаются и по сей день.

Мы приглашаем вас мысленно возвратиться в предыдущую главу. Материя — это объективная реальность, которая находится в постоянном развитии. Ничего нет застывшего, нет ничего навеки устоявшегося. Все предметы, любые явления переживают свою собственную историю, проходят последовательный ряд состояний от возникновения до исчезновения.

Таким образом, можно констатировать, что уже со второй половины XIX века стали в принципе понятными вопросы эволюционного возникновения жизни. Мы видели, как новые знания, ограниченно и ошибочно понятые, пошатнули на первых порах представление о самозарождении жизни из неживой природы. В обстановке очередной «паники», вызванной принципиально новыми открытиями, и «вспышки» идеалистических, самых реакционных взглядов на вопросы происхождения жизни Эрнст Геккель нашел в себе смелость объявить эту «мировую загадку» вполне познаваемой с позиций передовых научных знаний его времени.

К сожалению, за небольшой шеренгой первопроходчиков — от Ламарка до Тимирязева — следовали ученые, идущие в своих работах по неверным направлениям. Понятно, ни откровенные сторонники божественного «творения» живого, ни виталисты, которых «жизненная сила», по существу, отбрасывала в прошедшие века, ни сторонники механических воззрений не могли дать что-либо новой истинной науке. После времен Эрнста Геккеля почти полвека большинство ученых не обращалось к этой проблеме.

Первые десятилетия XX века в этих вопросах в разных вариациях и при отдельных здравых материалистических высказываниях в общем-то продолжали господствовать идеалистические взгляды.

Почти за столетие (от 70-х годов XIX до 50-х годов XX века) ученые сделали очень немного для постижения «мировой загадки» происхождения жизни. Как отмечал академик А. И. Опарин, «в биологической литературе 20 и 30-х годов нашего века к проблеме происхождения жизни сложилось весьма отрицательное отношение, как к вопросу, на который не стоит тратить времени серьезному исследователю».

Отношение ученых к проблеме происхождения жизни изменилось коренным образом лишь за последние 15–20 лет.

Дело, конечно, тут еще и в том, что биологическая наука, обогатившись методами современной физики и химии, получив себе в помощь несравненно более совершенное лабораторное оборудование, чем раньше, смогла познать много сокровенных тайн живого, вплоть до молекулярного уровня. Более того, биологическая наука смогла приступить к изучению и даже экспериментальному воспроизведению явлений, последовательно возникавших миллиарды лет назад в эволюционном развитии материи. Все с большей точностью подтверждается материалистический взгляд на эволюционное происхождение жизни.

Логично предположить, что во Вселенной, в силу ее бесконечности и неисчерпаемости, сложные формы движения материи воплощаются в самые невероятные, с нашей точки зрения, образования.

Другое дело — наша «видимая» Вселенная. Здесь в определенном объеме пространства и времени действуют свои закономерности, в силу которых материя находится в конкретных видах вещества и поля, образуется строго определенный набор атомов, которые создают звезды и планеты разных групп и классов. На планетах возникают взаимосвязанные сочетания атмосферных, почвенных и водных оболочек, а последние в своем развитии на каком-то этапе порождают жизнь.

Конечно, мы еще слишком плохо знаем даже «нашу» часть Вселенной. Но и то, что мы уже знаем, позволяет предположить определенную общность путей возникновения и развития жизни. Можно сказать, что в общем потоке эволюционного развития материи жизнь во Вселенной является закономерностью, бесконечно разной по своей форме. Жизнь в «нашей» части Вселенной — отдельная ветвь этого общего развития, а жизнь на планете Земля — отдельный листочек на нашей ветви со своими особенностями.

«Специфика этой ветви, — писал в 1966 году А. И. Опарин, — состоит в том, что в основе ее лежит процесс закономерной эволюции углеродистых соединений, составляющих материальную базу всех без исключения организмов. Начальные шаги эволюционного развития углеродистых веществ являются универсальными, широко распространенными в космосе. Они могут быть констатированы на весьма разнообразных небесных объектах. Однако последующие стадии этого развития были специфическими для земных условий, являлись неразрывно связанными с эволюцией самой нашей планеты. Изучение этой эволюции и открывает перед нами путь к разрешению интересующей нас проблемы».

Самые распространенные элементы в обозримой части Вселенной — водород и гелий. Неспроста водород, как вы помните, пытались трактовать как первичную основу материи. Четырехвалентный углерод, хотя количественно он и уступает водороду, тоже широко распространенный элемент. А главное, он сочетает в себе огромную температурную стойкость с чрезвычайно высокой химической активностью и замечательной способностью к формированию огромных полимерных молекул — порою чрезвычайно длинных атомных «цепей» с богатыми и изменчивыми боковыми ответвлениями. Забегая вперед, скажем, именно к такому типу соединений принадлежат различные белковые молекулы. В конечном итоге вся органическая химия в своих истоках содержит соединения водорода с углеродом, — эти вещества мы вправе считать исходными для всей органической эволюции.

Очень важным является еще и то, что атомы углерода не требуют для своего образования «сложных колыбелей». Тяжелые элементы образуются при титанических давлениях и температурах, сопровождающих вспышки сверхновых звезд, в то время как атомы углерода постоянно возникают в стабильном процессе звездного лучеиспускания. Уже одно это должно свидетельствовать о широком распространении углерода, а значит, и о больших возможностях его соединения с вездесущим водородом.

Соединения водорода с углеродом обнаруживаются повсеместно. Даже на поверхности Солнца, где температура колеблется около 5000–7000°, мы уже встречаем метан, то есть соединение одного атома углерода с четырьмя атомами водорода. Углеводородистые соединения находят в спектрах звезд и планетных атмосфер, на суше, в воздухе и воде.

На страницах фантастических романов мы встречаемся с необычайными жителями иных миров. Они с шипением растворяются, если на них попадает земная вода, или поражают воображение космонавтов, спокойно разгуливая в бушующем пламени. Пищей для подобного фантазирования послужили скороспелые гипотезы о том, что жизнь на других планетах может возникнуть не на углеродной, а на иной основе.

Факиры могут спать спокойно: на Землю не прилетят существа, способные пить расплавленный металл. Подавляющее большинство ученых пришли к твердому убеждению, что на нашей планете возможна лишь одна ветвь жизни, основанная на эволюции углеродистых соединений. Почему это так, отчасти вам должно быть ясно из только что прочитанного.

Итак, по данным А. И. Опарина и его школы, на первой стадии эволюции образуются простейшие углеродистые соединения, из которых важнейшими являются соединения углерода с водородом. Подобные соединения начинают возникать в допланетном состоянии и являются общим этапом возникновения жизни для всей познаваемой нами части Вселенной. Но это еще абиогенное (то есть независимое от жизни) образование простейших органических соединений.

«Детские» годы Земли известны нам далеко еще не с полной достоверностью. И все же многое стало известным. Чуда в этом нет — просто мы не одиноки в космосе. Туманности, звезды и планеты «живут» по своему календарю, где дни равны миллионам, а годы — миллиардам лет. Но небесных образований невероятно много, и все они находятся в разных стадиях развития. В черной бездне неба, как в грандиозном театре, постоянно демонстрируются миллиарды рождений и смертей, расцветов и угасаний. Пристальное изучение неба и Земли, космические полеты, все более серьезные попытки моделирования отдельных процессов далекой древности шаг за шагом приоткрывают перед нами истинную картину прошлого.


Перейти на страницу:
Изменить размер шрифта: