Компасы окончательно теряют голову

Однако, решение задачи было получено лишь пятьдесят с лишним лет спустя.

Время шло. Железное кораблестроение все расширялось. В 1859 г. во Франции, в Тулоне, спускается на воду первый в мире броненосец «Глюар» длиною в 77 м. Его паровая машина развивала девятьсот лошадиных сил. Вся надводная часть была покрыта стальными пластинами — броней, толщиною в 12 см. За броненосцем «Глюар» последовали еще более мощные корабли: «Куронь», «Норманди», «Энвенсибль», «Мажанта» и «Сольферино». По примеру Франции броненосные корабли начинают строить Англия, Германия, Соединенные штаты Америки и другие страны. К 1890 г. толщина стальной брони достигает 50 см, водоизмещение — двенадцати тысяч тонн, а мощность — двенадцати тысяч лошадиных сил (французский броненосец «Ош»). Это уже гиганты из железа и стали.

К концу XIX века как на гражданских, так и в особенности на военных кораблях появляется электричество. Сначала его применяют только для освещения, потом, по мере развития электромоторов, и для обслуживания различных механизмов.

Обстановка для работы компасов становится все более тяжелой и сложной. К влиянию огромных масс железа и стали присоединяется магнитное действие электрических токов.

Вопрос о правильном кораблевождении с помощью компаса с каждым десятилетием приобретает все большую остроту. Создается целая наука о поведении компаса — теория девиации[5], которая учит, как парализовать вредные влияния корабля на магнитную стрелку, но… слова Скорсби, сказанные на съезде Британской ассоциации еще в 1854 г.: «Мы никогда не сможем добиться от магнитного компаса правильных показаний на железном или стальном судне», по-прежнему остаются в силе.

Еще более тяжелые условия для магнитного компаса создаются на подводных лодках, опыты с которыми в течение всей второй половины прошлого столетия усиленно ведутся разными странами — Францией, Англией, Германией. В подводной лодке компас со всех сторон окружен железом и сталью, да кроме того действуют и электрические машины, по которым пробегают токи в тысячи ампер. Бедный компас окончательно теряет голову и начинает глупо тыкать своей стрелкой вместо севера на восток или на запад.

К 1910 г. стало ясно, что вместо магнитного компаса или по крайней мере в дополнение к нему нужно создать компас совершенно новой системы, ничего общего с магнетизмом не имеющий.

Вспомнили о гироскопе Фуко и об его замечательных свойствах, и ряд изобретателей в различных странах принимается конструировать гироскопические (волчковые) компасы.

Собственно говоря, о гироскопе как о приборе, который может заменить компас, неоднократно вспоминали и раньше. Сам Фуко размышлял над этой задачей, но для его времени она была неразрешима, так как не было средства, которое позволило бы на протяжении целых часов и даже дней непрерывно вращать волчок со скоростью многих тысяч оборотов в минуту. Не было достаточно прочного металла, который выдержал бы такую огромную скорость вращения, не разрываясь от действия чудовищной центробежной силы. Не было подходящих подшипников, которые сводили бы трение к ничтожной величине.

Все это появилось лишь в начале XX столетия — асинхронные (индукционные) электромоторы, высококачественные сорта стали, шариковые подшипники, — и задача превращения гироскопа в компас, получивший название гирокомпаса, после долгих усилий многих исследователей и изобретателей была, наконец, разрешена.


Перейти на страницу:
Изменить размер шрифта: