Grady smiled. “And thus marches Wall Street.”

Marrano tossed the paper model aside and turned back to Kulkarni. “Can you please find out what’s going on? I’d like to get back to the city.”

Johnson eyed the large bottles of cheap beer in the researchers’ hands. “You guys always drink while you’re messing around with high-voltage equipment?”

Alcot gave the barest hint of a smile. “We’re celebrating.”

Again Grady barely looked up from his keyboard as he answered for Alcot. “Bert’s right. Tonight is a special night. As you’ll see.” He finished typing, then looked up to regard them. “I’m guessing you’ll all need a drink soon enough.”

Marrano and Johnson exchanged unimpressed looks. “What’s the forty-one stand for?” Marrano gestured to the number on the researchers’ coveralls.

Grady tossed his paintball mask onto a nearby tool cart. He now looked like a BMW mechanic in blue coveralls. He pulled back his unruly, shoulder-length hair, wrapping it into a ponytail as he spoke. “Forty-one represents a starting point. Prime numbers are the atoms of mathematics. Viewed on an equilateral grid, the number forty-one appears at the very center of all the prime numbers below one hundred. And if we consider de Polignac’s conjecture, the fractal nature of that numerical array has tremendous significance at higher scales.”

“Jesus . . .” Marrano and Johnson again exchanged looks.

Alcot interceded. “I’ll grant you that Jon has some eccentricities, gentlemen, but I’ve begun to realize that he simply has a different perspective on things.”

Marrano gazed at the dozens of origami shapes scattered among electrical components on nearby tables. “That’s a shocker.”

Alcot picked up one of the shapes. “Non-Euclidean curved surface folding. Jon sometimes thinks through problems with his hands.”

“It helps with certain problem sets.” Grady approached them, apparently noticing the dubious look on the investor’s faces. “It’s fair to say I’ve strayed a bit from my business plan.”

Marrano scowled. “Strayed? I can’t even see your business plan from here. I’ve been going through your expenses. You’ve blown through half your annual budget in the last three months on utility bills alone.”

“An opportunity cost.” Grady gestured to the towering apparatus. “High energies are necessary to induce exotic states in baryonic matter. And exotic states are what we needed.”

“I’m guessing your burn rate is the real reason we’re here.” Marrano gestured to the massive tower of equipment. “Is this your Hail Mary pass before you go under? And what the hell is baryonic matter?”

“Physical stuff—for our purposes at subatomic scales.” He looked to Kulkarni. “Doctor Alcot and I have been studying the interaction of high-energy particles moving through doped graphene within superfluids like helium-4.”

Kulkarni nodded uncertainly. “Okay. And how does that relate to chiral superconductors, Mr. Grady?”

There was a pause.

“It doesn’t.”

There was a tense silence.

“But I could get funding for chiral superconductors.”

“That’s fraud.”

Fraud’s an ugly word. Anyone reading the business plan able to comprehend our mathematics would clearly understand what I was proposing.”

“Like I said: fraud.”

Grady looked unfazed. “Then it would make for the most boring lawsuit ever. Besides, someone in government was evidently intrigued by my math.”

Kulkarni turned to Alcot. “Did you know about this, Bert?”

Alcot grimaced. “I was unaware of it for a time, but eventually I came to accept it as necessary.”

“Your professional reputation—”

Grady interceded. “The fault is mine. Not Professor Alcot’s. But as you’ll see, none of that matters now.”

Alcot held up a reassuring hand. “I’ll be fine, Sam.”

“I’m concerned that Mr. Grady has been trading on your academic credentials.”

“It’s not like that at all. Almost the opposite, in fact.”

Kulkarni turned back to Grady. “So what is it you’re doing with these superfluids?”

Johnson glanced between the physicists. “‘Superfluids.’ ‘Baryonic matter.’ It all sounds like bullshit to me.”

Grady took a swig from a forty-ounce beer, then wiped his beard with his gloved hand. “Superfluids are very real, Mr. Johnson. A superfluid is a state in which matter behaves like a fluid with zero viscosity and zero entropy. Looks like a normal liquid, but at ultralow temperatures flows without friction. Point is: In certain extreme environments the standard model of physics breaks down. Look . . .”

He approached a glass enclosure mounted to one side of the tower and slipped his arms through a pair of thick silvery gloves in its face. The others watched as inside the glovebox Grady unscrewed a smoking ceramic cylinder from the side of the monstrous assembly. He then grabbed a nearby glass beaker and carefully poured a clear, steaming liquid into it from the cylinder.

“This is helium-4 at slightly below two-point-one-seven Kelvin.” He held the beaker up and to the side. Even though the beaker was made of thick glass, the liquid inside dripped through the bottom as if it were a window screen. It hit the floor of the glovebox and quickly evaporated.

Johnson looked surprised. “Holy shit. It’s pouring through glass.”

“Exactly. In a quantum state strange things happen. It’s paring matter down to its essence. Subatomic particles. Slipping between the cracks of standard physics.” He screwed the cylinder back in the monstrous assembly. “Each particle of helium-4 is a boson, by virtue of its zero spin. At the lambda point, its quantum effects become apparent on a macroscopic scale—meaning individual atoms are no longer relevant within the liquid. Superfluid vacuum theory is an approach in theoretical physics where space-time itself is viewed as a superfluid. The fluid of reality.”

Kulkarni frowned. “Superfluid vacuum theory? Why . . . What are you trying to do here, Mr. Grady?”

“We’re attempting to reflect gravitational waves, Doctor Kulkarni.”

Kulkarni was momentarily speechless. He turned to Alcot. “Is he serious, Bert? And you agreed to this?”

Alcot shrugged. “They say it’s important to stay active in retirement.”

Kulkarni turned back to Grady. “What on earth made you think this was feasible?”

“Because I can see it right here.” Grady pressed a finger against his head.

Kulkarni just stared.

Grady held up a hand. “All right, you’re skeptical. Fair enough.” He gestured to the tower. “A superfluid flows without friction. And superconductors allow electrons to flow without resistance. What we did was suspend a graphene coil within a superfluid.”

“Why graphene?”

“It’s a superconducting film. Replicates electrons moving through a near-perfect vacuum. Isolates particles from interference. Graphene also exhibits exotic effects under certain conditions.”

“I’m still not seeing how this relates to your goal, Mr. Grady.”

“Right. I needed a charged superconducting sheet. The quantum mechanical nonlocalizability of the negatively charged Cooper pairs, protected from the localizing effect of decoherence by an energy gap, causes the pairs to undergo nongeodesic motion in the presence of a gravitational wave.”

Marrano threw up his hands. “I told you, Professor, this guy is just stringing words together at random.”

Kulkarni held up a reassuring hand to Marrano and focused back on Grady. “Go on.”

Grady shrugged. “The surrounding non-superconducting ionic lattice is localized and so executes geodesic motion, moving along with space-time, while the Cooper pairs execute non-geodesic motion—thereby accelerating relative to space-time. The different motions lead to a separation of charge. That charge separation causes the graphene to become electrically polarized, generating a restoring Coulomb force. The back action of the Coulomb force on the Cooper pairs magnifies the mass supercurrents generated by the wave—producing a reflection.”


Перейти на страницу:
Изменить размер шрифта: