Но гораздо более важным с нынешней точки зрения оказался призыв Галилея подвергнуть измерениям все, что есть в природе. С того времени на нас выливается поток все новых, все более уточняющих результатов, бесконечное количество фактов, ведь легче и проще вычислять, чем постигать сущность явлений. Если раньше полагали, что суть вещей можно понять благодаря нескольким экспериментам и глубокому их осмыслению, то теперь нередко предпочитают собрать побольше различных данных, а пусть кто-нибудь другой попробует их осмыслить. Эта точка зрения, как правило, ошибочна. Постепенно мы убеждаемся, что огромная масса накопленных измерений остается мертвым грузом, не имеющим значения для естествознания. Ниже мы увидим, как мало знаем о повседневных явлениях природы, несмотря на прилежную регистрацию их.

Непознанное i_003.png

Начнем с того, чего мы не знаем о космосе, о мире вокруг нас. Когда датский астроном Тиге Браге, имя которого, как правило, известно нам в латинизированной форме — Тихо Браге, в 1576 году построил обсерваторию, то в его «Замке неба» на острове Хвен в Зунде имелись только большие «квадраты» — приборы для измерения углов. С их помощью определяют направление движения созвездий. Если Браге без всяких инструментов собрал достаточно данных о вселенной, чтобы составить близкое к идеям Коперника представление о нашей солнечной системе, то этим можно только восхищаться. После смерти Браге Кеплер по этим данным сможет вывести названные его именем законы движения планет! Но чего мы этим достигли? Немногим больше, чем древние люди, которые поэтично выразили свое представление о происхождении нашего мира в легендах и мифах. Чтобы понять явление, необходимо знать, как оно возникло, а об этом нам ничего не говорят ни законы движения планет Кеплера, ни наблюдения Галилея.

Наука владеет тремя путями, позволяющими ответить на вопрос о происхождении вещей.

Первый заключается в том, что мы изучаем объект во всех возможных аспектах. Если его нынешняя форма и состав — следствие имевших место ранее событий (если здесь применим закон причины и следствия), то мы можем проникнуть в прошлое объекта исследования. Пример: на поле с глинистой почвой мы нашли камень. Он явно занесен сюда. Камень плоский и округлый. Он имеет отшлифованные края. Его отшлифовал песок или вода. Но поскольку камень плоский, значит, песок, которым он отшлифован, принесен водой, а не ветром. Внутри камня обнаруживаются остатки маленьких раковин, значит, камень возник в те времена, когда эти существа еще жили. Камень из известняка, значит, он возник в меловой период истории нашей Земли, то есть ему около 185 миллионов лет. Остатки раковин позволяют установить и то, насколько теплым (или холодным) было море, где жили раковины и образовалась каменная масса. Таким образом, мы узнаем причины возникновения камня, а поскольку перечисленные факты сами имеют определенную причину, мы узнаем нечто и о других событиях. Как раз такой метод — попытки разгадать историю происхождения по нескольким каменным осколкам — используется в последние годы на Луне, и не без успеха.

Если попытка измерить возможно большее количество деталей, по которым делаются важные выводы, не дает результатов, следует попробовать второй путь: с максимально допустимой точностью измеряют детали на возможно большем количестве объектов исследования. Суммируя результаты, можно сделать выводы, позволяющие понять строение, становление и историю объекта исследования. Пример подобных исследований — постоянный поиск астрономами новых звездных миров.

Оба метода исследования идеальны, однако на практике ни один из них не оказывается достаточным. Наука всякий раз сталкивается с тем, что первый путь страдает неточностью измерений, а для второго не хватает подходящих объектов. Большинство исследователей принимают компромиссные решения, используя оба метода. Но совместить их не всегда оказывается возможным, а подчас и просто невозможно объединить друг с другом.

Задаваясь вопросом о происхождении мира, мы никак не можем воспользоваться третьим методом. Им часто пользуются химики: они пытаются искусственно создать исследуемый объект и проверить таким образом наши представления о его происхождении и свойствах. К сожалению, а может быть, к счастью, мы не можем пока создать новой вселенной в наших ретортах. (Правда, астроном может объявить о предстоящей лекции на университетской доске: «Упражнения по строению вселенной. Только для студентов старших семестров», а шутник подпишет внизу: «Не натворите бед», но здесь речь идет лишь о математических расчетах физики звездных систем.)

Таким образом, через три с половиной века после Галилея мы все еще задаем себе вопрос: как возникла наша вселенная? Предлагаются две взаимоисключающие теории. Одна из них гласит:

Вначале весь космический материал представлял собой нечто целое, затем произошел взрыв, в результате которого и был создан звездный мир.

Другая теория утверждает:

Вселенная с самого начала была такой, какой мы ее видим: звезды, их плотность, их перемещения в пространстве.

Приверженцы первой теории говорят об «изначальном хлопке» (big bang по-английски), об огненном шаре, который содержал частицы нашего мира и антимира, в котором материя превратилась в излучение и из которого возник известный нам космос. Согласно этой теории уже через две секунды после взрыва при температурах порядка 10 миллиардов градусов образовались протоны и нейтроны, из которых в последующие 11 минут (время распада свободных нейтронов) за счет захвата этих частиц образовались атомные ядра тяжелых элементов. Примерно через 10 тысяч лет возникли атомы водорода и гелия. Если принять время расширения вселенной равным примерно 10 миллионам лет, то за это время отдельные участки газа, который вначале равномерно заполнял мир, начали объединяться. Из этих газовых облаков образовались системы туманностей или звездные системы. В ходе развития нашей туманности большая часть первоначального газового облака трансформировалась в звезды; часть массы, связанной притяжением звезд, вновь распалась и была возвращена в межзвездную материю.

Некоторые исследователи осмеливаются даже предположить, что когда-нибудь весь процесс начнет протекать в обратном порядке, что восстановление и распад сменяют друг друга, что вселенная осциллирует.

Малоутешительная картина! Само представление о том, что наш мир возник с изначального взрыва и когда-нибудь прекратит свое существование в обратном процессе, не очень-то приятно, а уж идея, что этот процесс повторяется снова и снова, и вовсе напоминает кошмарный сон: это ведь значило бы, что Земля начинает и вновь прекращает свое существование и род человеческий вместе с ней. Может быть, и каждый из нас рождается заново на новой Земле.

Более человечной представляется вторая теория, которая говорит о вселенной, существующей постоянно (steady state по-английски). К этим симпатичным теоретикам относится английский астроном Фред Хойл (он родился в 1915 году). До 1972 года был директором Института теоретической астрономии в Кембридже (Англия), один из самых выдающихся исследователей, которые работали в обсерваториях Маунт Вильсон и Маунт Паломар в США. Его называют британским профессором телескопии. Хойл приобрел всемирную известность как автор научных монографий и отличных фантастических романов. Однако мало кто из писателей умеет и обуздывать свою фантазию так, как Хойл. Например, в предисловии к роману «Черное облако», где говорится о некоем черном облаке — живом космическом существе, угрожающем Земле, Хойл пишет:

«Я надеюсь, что мои коллеги-ученые славно посмеются над подобными бреднями. Одновременно я должен указать на то, что лишь малая часть описанного не укладывается в границы возможного».

Хойл, как и некоторые другие астрономы, все время пытается дать обзор всему многообразию космических событий, он пытается их расклассифицировать: звезды, астероиды, метеориты, космическая пыль, туман, источники радиосигналов, пульсары, квазары, межзвездные газовые массы. Такого человека, как Хойл, увлекала идея, что все эти образования находятся в постоянном равновесии сил и масс, что, скажем, где-то звезды гибнут, однако в другом месте непременно возникает что-то новое, так что в общем наблюдается «steady state» — постоянное состояние. В защиту этой теории он приводит все новые аргументы, доступные ему как астроному, физику и математику. Хойлу удалось убедить в своей теории многих своих коллег, и даже несведущий человек вдохновляется ею. В картине огромной вселенной, порождающей из себя новые миры, но в то же время вечно упорядоченной, есть нечто подкупающее. Однако, несмотря на элегантные формулы и выразительные математические построения, убедить подобные доказательства могут лишь специалиста. Ведь основная закавыка обеих теорий заключается в том, что они показывают нам мир, который никак нельзя назвать ни окончательно готовым, ни находящимся хотя бы во временном покое.


Перейти на страницу:
Изменить размер шрифта: