После измерений Крукса уже нельзя было сомневаться в том, что найденный Рэмзэем газ есть действительно гелий[9].
В тот же день — 23 марта 1895 года — Рэмзэй решился опубликовать своё открытие. Он послал короткое сообщение Лондонскому Королевскому обществу (так называется высшее научное учреждение в Англии) и одновременно написал письмо известному французскому химику академику Бертело с просьбой сообщить Парижской Академии наук об открытии гелия на Земле.
В истории открытий бывают странные совпадения. Через две недели после Рэмзэя другой химик, швед Ланглэ, тоже добыл гелий, тоже из клевеита, и сообщил о своём открытии тому же академику Вертело. Письмо его было помечено 8-м апреля 1895 года.
Новая задача
Как только Рэмзэй добыл из клевеита гелий, он сейчас же стал проделывать с ним разнообразные опыты. Ведь он был первый химик на свете, которому посчастливилось держать в руках солнечное вещество.
Гелий, открытый на Солнце, нельзя было взвешивать. Астрономы только догадывались, что это один из легчайших газов. Рэмзэй впервые взвесил гелий. Он убедился, что астрономы были правы: гелий и в самом деле оказался очень лёгким газом. Изо всех газов один только водород легче гелия, а все другие тяжелее. Воздух тяжелее гелия почти в семь раз.
Потом Рэмзэй решил испытать, может ли гелий химически соединяться с другими веществами.
Он перепробовал множество веществ, но ни с одним из них гелий не захотел соединяться.
Значит, гелий тоже ленивый газ, как и аргон.
А если так, то не поискать ли его в воздухе? Ведь газ, который не желает соединяться с другими веществами, непременно уйдёт в воздух. Даже если он находится в недрах земли, в горных породах, то и тогда проберётся он в атмосферу по трещинкам и порам.
Как же узнать, есть ли в атмосфере гелий? Как добыть гелий не из редкого минерала клевеита, а из самого обыкновенного воздуха?
Если правда, что гелий растворён в воздухе, то есть только один способ извлечь его оттуда.
Нужно удалить из воздуха все другие газы — убрать кислород, убрать азот, убрать аргон. То, что останется, это, верно, и будет гелий.
Но как же это сделать? Как удалить из воздуха кислород, азот и аргон?
Кислород удалить нетрудно. Рэмзэй знал, что раскалённая медь поглощает кислород, присоединяет его к себе. Батарея фарфоровых трубок, наполненных раскалёнными медными опилками, — вот прибор для удаления кислорода из воздуха. Насосы гонят воздух по трубкам — из одной в другую, — и по дороге кислород застревает в раскалённых опилках. И вот из батареи в закрытый сосуд, в газометр, течёт уже не воздух, а воздух минус кислород, воздух, освобождённый от кислорода.
После кислорода легко убрать и азот. Тут уж не медь нужна, а другой металл — магний. Нужно взять такие же фарфоровые трубки, но наполнить их не раскалённой медью, а раскалённым магнием. Из второй батареи в газометр будет вытекать не воздух, а воздух минус кислород и минус азот.
Ну, а как быть с аргоном? Ведь аргон — ленивый газ: он не соединится ни с магнием, ни с медью. Нет такого раскалённого металла, который мог бы впитать в себя аргон. Он пройдёт через обе батареи и не застрянет в пути.
И гелий тоже ленив, он тоже не застрянет в раскалённых опилках. Вместе с аргоном он проскочит через обе батареи.
Как же отделить гелий от аргона? Как из смеси аргона с гелием добыть чистый гелий?
Рэмзэй долго ломал себе голову над этой задачей. Если бы можно было найти такое вещество, которое соединяется с аргоном, но не с гелием, — тогда задача была бы решена. Аргон застрял бы в этом веществе, как раньше застряли кислород и азот, и в газометре остался бы чистый гелий.
Но ведь в том-то и беда, что такого вещества в природе нет. Ни одно вещество не соединяется с ленивым газом аргоном.
Значит, аргон нельзя удалить тем же способом, каким был удалён кислород и азот.
Задача казалась неразрешимой.
Ключ к решению
Только после долгого раздумья Рэмзэй понял, что ему делать. Он вспомнил, как поступают химики, когда из смеси спирта с водой нужно добыть чистый спирт.
Спирт испаряется быстрее, чем вода. Этим-то и пользуются химики. Они нагревают смесь. Первые порции пара, поднимающиеся над жидкостью, — это пары́ чистого спирта. Следующие порции — это смесь паров воды и паров спирта. А последним идёт уже чистый водяной пар.
С первыми порциями пара де́ла немного. Стоит охладить этот пар, и он сразу превратится в чистый спирт.
А вот со следующими порциями, со смесью паров, возни больше. Их тоже собирают, тоже охлаждают, но в холодильник теперь течёт уж не чистый спирт, а смесь воды и спирта. Эту смесь снова пускают в перегонный аппарат, снова нагревают, и вот опять поднимаются пары — сперва пары чистого спирта, а за ними и смесь, которую ещё раз пускают в перегонку. И вся эта история повторяется до тех пор, пока не удаётся окончательно разлучить воду со спиртом.
Этот хлопотливый, но верный способ отделения одной жидкости от другой называется у химиков дробной перегонкой.
На этот раз Рэмзэй решил отделить дробной перегонкой гелий от аргона.
Но разве это возможно? Ведь дробной перегонкой химики разлучают жидкости, а гелий и аргон — газы.
Рэмзэй доказал, что это возможно. Нужно только превратить воздух в жидкость, а потом дать ему испариться. При перегонке составные части воздуха будут уходить из него не все сразу, а по очереди: сперва уйдёт та, которая легче всего испаряется, а за ней и другие, которые испаряются медленнее.
Так дробная перегонка поможет отделить гелий от аргона.
Значит, остановка только за тем, чтобы сделать воздух жидким.
Для этого нужен очень большой холод: 192 градуса ниже нуля. При ста девяноста двух градусах воздух превращается в жидкость.
Нигде на земле такого мороза не бывает. Но люди научились создавать его сами.
Мороз в 192 градуса производят особые холодильные машины.
Почти в каждой хорошо оборудованной лаборатории вы найдёте в наше время холодильную машину. Но в те времена, когда Рэмзэй занимался поисками гелия в воздухе, в целом мире существовали всего лишь три-четыре лаборатории, в которых сложными и громоздкими способами добывался жидкий воздух.
Рэмзэй был в большом затруднении. Для задуманной работы требовалось много жидкого воздуха. А он был редкостью.
Но тут Рэмзэю неожиданно повезло. На его счастье, как раз в ту пору, когда жидкий воздух был ему необходим, а достать его было негде, — в эти самые дни, как будто нарочно для него, изобрели холодильную машину, такую простую и удобную, что её можно было завести в каждой лаборатории.
Два человека изобрели её в одно и то же время. Они жили в разных странах и работали порознь. Но изобретённые ими машины устроены совершенно одинаково.
Изготовление холода
Если воздух сильно сжать, а затем дать ему быстро расшириться, он сразу охладится. На этом физическом законе и основано устройство холодильной машины.
В машину подают воздух. Мощные насосы сжимают его в узкой трубе, а затем выгоняют в просторную камеру. Тут он сразу расширяется и становится холоднее. Этим охлаждённым воздухом охлаждают новую порцию сжатого воздуха, поступившую в машину. А расширившись, она становится ещё холоднее. Второй порцией охлаждают третью, третьей четвёртую, и наконец в машине наступает мороз в 192 градуса. Воздух так охлаждён, что превратился в жидкость.
Машина для превращения воздуха в жидкость
Сжатый воздух втекает в машину по внутренней трубке, обозначенной на рисунке пунктиром. Попав в камеру, воздух расширяется, делается холоднее и возвращается по наружной трубе. Поднимаясь по наружной трубе, он охлаждает новую порцию сжатого воздуха, которая в это время опускается в камеру по внутренней трубке. В конце концов воздух превращается в жидкость и каплями стекает в камеру. Открыв кран, можно выпустить из машины жидкий воздух, как кипяток из самовара.
9
Был ли Рэмзэй первым человеком, увидевшим на Земле вещество, которое испускает линию D3? В 1881 году итальянец Пальмиери напечатал статью, в которой утверждал, что ему удалось наблюдать жёлтую линию гелия в спектре лавы вулкана Везувия. Поэтому многие думают, что не Рэмзэй открыл гелий на Земле, а Пальмиери — за 14 лет до Рэмзэя. Но вернее всего, что Пальмиери попросту ошибся. В наше время химики доказали, что гелия в лаве очень мало — так мало, что Пальмиери не мог наблюдать линию гелия в тех условиях, в которых он работал. Жёлтая линия, которую он видел, принадлежала, вероятно, натрию.