В обоих случаях найденный центр окружности желательно проверить с помощью циркуля.
Построение овалов
Существует несколько способов построения овалов. Один из них заключается в сопряжении дуг. Если овал задан его длиной, то построение лучше делать в пропорции золотого сечения, как показано на рис. 14, д. Отрезок АВ делят на четыре части, в результате чего образуются точки О1 и О2. Центр О3 получается в точке пересечения дуг из О1 и О2 радиусом, равным величине отрезка О1О2. Чтобы построить более широкий овал, отрезок АВ необходимо разделить на 3 части.
Построение овала по заданным осям показано на рис. 14, е. Центры сопрягаемых дуг в данном случае находятся на линии, которая проходит через середину отрезка АЕ. Последовательность построения отрезка АЕ обозначена цифрами 1 и 2.
Построение овоида
Овоид – овал, имеющий одну ось симметрии. Построение овоида показано на рис. 14, ж, где последовательность выполнения обозначена цифрами 1, 2, 3. Чтобы овоид был более удлиненным, центры дуг О1 и О2 отдаляются. Их положение определяется по желанию.
Построение эллипсов
Силуэты овала и овоида не всегда устраивают резчика. Более строгую форму имеет эллипс. Самое простое и распространенное построение эллипса показано на рис. 15, а.
В данном случае производят обвод карандашом с помощью нити, концы которой прикреплены к гвоздикам. Гвоздики вбивают в точки фокусов эллипса F1 и F2. Длина нити должна соответствовать длине отрезка АВ. Форма эллипса определяется отношением его осей. Фокусы эллипса при этом располагаются следующим образом: из точки D циркулем делают засечки на отрезке АВ. Радиус циркуля должен быть равен отрезку АО, то есть большой полуоси. Этот способ очень удобен для построения крупных эллипсов или же тогда, когда есть возможность забить в основу гвозди. Следует отметить, что данное построение может быть не всегда точным.
Наиболее универсальный способ построения эллипса, который не требует нитей и гвоздей, представлен на рис. 15, б. Для построения берут полоску бумаги с ровным обрезом (лучше всего согнуть бумагу вдоль). На полоске бумаги, у ее кромки, делают засечки: расстояние от точки 1 до точки 2 соответствует длине отрезка АО; расстояние от точки 1 до точки 3 соответствует длине отрезка DO. Полоску с засечками перемещают по полю эллипса таким образом, чтобы точки 2 и 3 находились на линиях осей или на их продолжении. В результате получается последовательное перемещение точки 1 по линии эллипса. Полученные в результате чертежа точки отмечают карандашом и соединяют с помощью лекала или от руки.
Удобно строить точки только на четверти эллипса (рис. 15, в). Затем циркулем подбирают радиус для дуги, которая совпадает с большинством точек в крутой части эллипса. Второй радиус – для пологой части эллипса – строят аналогично. В результате построения полученные дуги немного не будут стыковаться. Эти участки доводят от руки. Радиусы, подобранные на четверти эллипса, определяют полные дуги с обеих сторон эллипса. Симметрия и строгость кривой при этом гарантированы. Главное условие для подобного построения – расположение осей точно под прямым углом друг к другу.
Чтобы более точно приблизить кривую к эллипсу, используют более двух сопрягаемых дуг. Например, на участке стыка двух дуг, которые использовались для построения, можно провести третью (рис. 15, г). Для этого из точек 2 и 3 на данном участке эллипса проводят перпендикуляры к осям. Точку их пересечения 4 соединяют с точкой 1. На этой линии будет лежать центр дуги данного участка эллипса. Касательная к эллипсу пройдет в точке 1 и будет перпендикулярна линии 1–4.
Подобные построения используют, например, при изготовлении резных рамок. Если взять ширину рамы одинаковой по всему периметру (рис. 15, д, 1), то она не будет смотреться правильно построенной. Так же плохо воспринимается зрительно и рама, у которой коэффициенты соотношения осей во внешнем и внутреннем эллипсах одинаковы (рис. 15, д, 2). Наиболее удачной композиционно выглядит рама, где для внешнего эллипса малой осью будет средний размер между малыми осями первого и второго случаев (рис. 15, д, 3). Это даст приблизительно 8 % уменьшения ее величины по отношению к первому случаю или 8 % увеличения по сравнению с малой осью второго случая.
Рис. 15. Построение эллипсов: а – простое построение; б, в – построение по принципу эллипсографа; г – построение касательной к эллипсу; д – силуэт эллиптической рамки в пропорциях золотого сечения: 1 – одинаковая ширина по всему периметру; 2 – одинаковое отношение осей внешнего и внутреннего эллипсов; 3 – усредненное соотношение осей эллипсов.
Построение куполов
В практике резьбы достаточно часто встречаются всевозможные типы куполов и формы луковичных глав в виде наконечников и концовок.
Схемы построения куполов представлены на рис. 16. Построение луковичной главы в первом варианте заключается в сопряжении двух окружностей. За модуль здесь берется 1/10 диаметра главы. Второй и третий варианты отличаются между собой величиной радиуса очерковой дуги при вершине главы. Радиус в первом варианте равен радиусу исходной сферы. Все построения луковичных глав выполняются в пропорциях золотого сечения.
Рис. 16. Построение куполов: а – построение простых куполов; б – построение луковичной главы.
Построение спирали
Спиралью называется плоская кривая, описываемая точкой, удаляющейся от центра при совершении кругового движения в плоскости чертежа вокруг центра спирали. На практике различают спирали с постоянным и постепенно возрастающим расстоянием между завитками. Обычно спирали строят по точкам и вычерчивают с помощью лекала.
Для того чтобы расчертить спираль, необходимо наметить не менее двух ее центров. Если вычерчивают спираль из трех или более центров, то обычно центрами спирали являются вершины правильного треугольника или правильного многоугольника. Каждую дугу проводят из последующей вершины до пересечения с лучом из угла треугольника или многоугольника. Радиус при этом каждый раз увеличивается на длину, равную длине стороны треугольника или многоугольника.
Рассмотрим, например, как начертить так называемую «архимедову спираль» (рис. 17, а). Для этого нужно провести горизонтальную линию и отметить на ней две точки О1 и О2, отстоящие одна от другой примерно на 3 мм. Поставив ножку циркуля в одну из этих точек (О1), проведите дугу радиусом 3 мм (R1), равную половине окружности. Концы этой дуги должны опираться на горизонтальную ось (в данном примере – сверху).
Затем перенесите ножку циркуля во вторую из отмеченных точек и увеличьте его раствор так, чтобы карандаш попал в конец первой дуги. Снова проведите половину окружности радиусом R2, опирающуюся на горизонтальную линию, но уже с противоположной стороны (снизу). Таким же образом, переставляя ножку циркуля то в первую, то во вторую точку и каждый раз увеличивая его раствор, продолжайте разворачивать спираль. На рис. 17, а, изображено четыре полных оборота.
Для построения спирали, имеющей три центра (рис. 17, б), находящихся на равных расстояниях один от другого, необходимо предварительно построить равносторонний треугольник 1–2–3 (заштрихован) и продолжить его стороны так, как это показано на рисунке (линии 1–1’, 2–2’ и 3–3’).