cυ = е-Uυ/kT .

Для примера оценим значения cυ в золоте при двух температурах: комнатной (Т = 300 К) и температуре плавления (Т = 1336 К). Энергия образования вакансии в золоте Uυ = 1,6• 1 0-12 эрг. Помня, что константа Больцмана к = 1,38•10-16 эрг/К, легко получить интересующие нас величины: при комнатной температуре одна вакансия приходится на 1015 атомов, а при температуре плавления одна вакансия — на 104 атомов. Кристалл, как выясняется, довольствуется малым числом вакансий, но отказаться от них и не может, и не имеет нрава!

С температурой нарастающей по экспоненциальному закону беспорядок в кристалле приводит к тому, что многие его характеристики изменяются, подчиняясь этому же закону. Это относится к коэффициенту диффузии, определяющему подвижность атомов в кристаллах, к упругости пара, которая зависит от вероятности отрыва атома от поверхности кристалла, а в ионных кристаллах и к коэффициенту электропроводности, которая, как известно, осуществляется диффузионным механизмом, и ко многому другому. Мне кажется, что происходящее с кристаллом при повышении температуры можно определить так: он экспоненциально оживает. Определение, разумеется, не строгое, но правильно передающее существо происходящего.

ПАРА ФРЕНКЕЛЯ

Знаменитый английский физик-теоретик, шестой из славной плеяды кавендишских профессоров и Нобелевский лауреат Невилл Мотт в своих сердечных воспоминаниях о Якове Ильиче Френкеле говорит о том, что любой английский студент-физик знает о «паре Френкеля» и что так будет всегда, до тех пор, пока люди будут интересоваться физикой.

Я хочу проследить историю возникновения идеи о «паре», проследить судьбу этой идеи от ее рождения до того времени, когда она овладела сознанием всех, изучающих реальный кристалл, и вместе с читателем подумать над тем, как через четверть века после рождения она обрела вторую молодость. Пользуясь терминологией спортсменов — обрела второе дыхание. История «пары Френкеля» — поучительная история, она заслуживает пристального внимания.

В конце 10-х годов нынешнего века Абрам Федорович Иоффе изучал процессы в ионном кристалле, к которому извне приложена разность потенциалов. Обнаруженные им явления выглядели неожиданно. Во-первых, оказалось, что сквозь кристаллы течет ток. Точнее говоря, не ток, а два тока: ток положительных зарядов к катоду и ток отрицательных зарядов к аноду. Во-вторых, выяснилось, что при неизменной разности потенциалов с повышением температуры величины обоих токов растут.

Следовало удивляться и одному, и другому результату. К тому времени, когда Иоффе экспериментировал, уже было известно, что ионный кристалл состоит из положительно и отрицательно заряженных ионов, из катионов и анионов, которые образуют две сосуществующие подрешетки. В этих подрешетках каждый из ионов приписан к определенному узлу. Молчаливо предполагалось, что приписан навечно: анион, окруженный катионами, катион — анионами.

А если так, то как могут возникнуть токи? Кто переносит заряды? Ионы? Но им двигаться запрещено. И не словесно, а структурой кристалла. Фактом приписки навечно к определенному узлу решетки. В такой ситуации, когда непонятно, как и кем переносятся заряды, вряд ли стоит обсуждать, почему ток увеличивается с температурой.

Для объяснения результатов опытов возникла рабочая гипотеза, которой суждено было стать одной из фундаментальных идей физики реального кристалла. Я. И. Френкель эту гипотезу теоретически развил. В те годы Френкель был совсем молодым человеком и ему были свойственны независимость и революционность мышления, которые приличествуют талантливой молодости. Впрочем, свой огромный творческий потенциал Я. И. Френкель сохранил до конца своей, к несчастью, короткой жизни.

Рассуждал он примерно так. Ион, находящийся на поверхности кристалла, может, случайно оторвавшись от него, покинув узел, в котором находился, уйти в паровую фазу. Для этого случайного события нужно, чтобы тот ион, которому надлежит совершить героический поступок — оторваться от соседей и покинуть узел, — обрел необходимую для этого энергию. Почему, собственно, рассуждал Френкель, атом может испаряться лишь с поверхности кристалла в окружающую пустоту? Вообще говоря, не существует никаких принципиальных запретов, в силу которых атом не может из объема кристалла испариться... в объем кристалла. Точнее говоря, покинуть узел в объеме кристалла и перейти в межузельное пространство. Быть может, этот поступок требует даже меньшего героизма, количественной мерой которого является необходимая для этого энергия, чем испарение с поверхности в пустоту? Если атом покинет узел, перейдя в межузельное пространство, а затем, совершив несколько случайных скачков из междоузлия в междоузлие, уйдет прочь от своего узла, то в результате возникнут одновременно два дефекта: вакантный узел и атом в междоузлии, где ему быть не положено. Эти два дефекта, родившиеся одновременно в одном акте «испарения атома в кристалл», и обрели название «пары Френкеля».

Вот теперь качественно объяснить результаты опытов Иоффе — сущий пустяк. Обе компоненты «пары Френкеля» — и межузельный ион, и вакансия — заряжены и под действием электрического поля направленно могут перемещаться по решетке, а значит, и переносить заряд.

Ион, несущий заряд, — это не вызывает вопросов. А вот «заряженная вакансия» — это следует пояснить! Если иметь в виду величину и знак заряда, то речь идет о том, что уход иона из узла вместе со своим зарядом можно представить как приход в опустевший узел заряда, равного по величине и обратного по знаку заряду ушедшего иона. Ушел катион — осталась отрицательно заряженная вакансия, ушел анион — осталась положительно заряженная вакансия.

Межузельный атом перемещается легко, так как рядом с тем междоузлием, в котором он находится в данный момент, всегда имеются иные междоузлия, в которые он может перепрыгнуть. А вакансия может перемещаться потому, что находящийся вблизи нее ион может «впрыгнуть» в нее, а это значит, что вакантной окажется та позиция, где раньше находился этот ион. В этом процессе вакансия перемещается на одно межатомное расстояние.

Итак, благодаря представлению о «паре Френкеля» можно понять, почему под влиянием внешнего поля в ионном кристалле текут токи. Очень естественно объясняется и рост тока с температурой. Как и упругость пара, концентрация «пар Френкеля» с температурой растет по экспоненциальному закону, по этому же закону растет концентрация носителей тока, а значит, и его величина.

Представления о «парах» Яков Ильич облек в математическую форму, вычислив концентрацию «пар». Его расчет не сложен. Результат расчета прост, физически ясен, его можно понять, минуя математику. Как мы уже знаем, какое-то количество «пар» обязательно должно в кристалле присутствовать, так как их появление есть следствие флуктуаций энергии, а флуктуации — это то, что не происходить не может. В этом смысле «пары» будто и не дефект, так как существовать без них кристалл не может. Термодинамика, требующая появления флуктуаций, делает «пары» жизненно необходимыми кристаллу.

До сих пор мой рассказ похож на сказку со счастливым концом: есть загадочное явление, есть счастливая догадка, объясняющая явление. Экспериментатор открыл, теоретик предложил качественное объяснение — конец счастливый! Все было бы так, если бы не одно обстоятельство, если бы не малая малость: в тех кристаллах, с которыми экспериментировал Иоффе, ...«пары Френкеля» практически не могут возникать потому, что переход из узла в междоузлие требует непомерно большой энергетической флуктуации: ион велик, а междоузлие мало, и «втиснуться» в междоузлие — это значит сильно потеснить атомы, находящиеся в непосредственном соседстве с данным междоузлием. А для этого нужна большая энергия. Во всяком случае именно так дело обстоит в таких кристаллах, как NaCl, КCl и др. Разве только в кристаллах AgCl дело обстоит по-иному, так как ион серебра значительно меньше иона хлора и ему в междоузлии, образованном ионами хлора, будет не тесно.


Перейти на страницу:
Изменить размер шрифта: