Последняя фраза, пожалуй, самая главная во всем очерке. Она дает право утверждать, что теплоемкость электронного газа является не нулевой, но заведомо меньшей чем 3 кал/ (моль•К), так как все те электроны, которые на энергетической лесенке расположены ниже уровня Ферми, не принимают участия в том тепловом движении, которое обусловливает теплоемкость электронов. Точный расчет свидетельствует о том, что электронный вклад в теплоемкость металла, возрастающую по закону Сэ ~ T при высокой температуре мал, порядка 1 %. Эта величина близка к погрешности измерений теплоемкости. Именно поэтому экспериментатор и получает величину, близкую к 6 кал/(моль•К).

Здесь, продолжив логику изложения, иной читатель обратит внимание на то, что по мере освобождения ступенек вблизи уровня Ферми на них могут переходить электроны с нижних ступенек и в конце концов все электроны начнут принимать участие в тепловом движении. Все станет на свои «классические» места, и шестерка превратится в девятку. «Иной» читатель прав. Точнее, качественно прав, так, вообще говоря, может быть, но ... реально не будет! Дело в том, что из совсем несложных расчетов следует, что электронный газ потеряет воспоминание о своей квантовой природе и превратится в классический газ около так называемой «температуры вырождения», которая для металлов оказывается весьма высокой, порядка 10б К. При такой высокой температуре любой металл испарится, а с ним исчезнет и предмет наших забот — электронный газ. Таким образом, вплоть до температуры плавления электронный газ в металле оказывается, как говорят физики, «сильно вырожденным», заведомо квантовым. И поэтому теплоемкость электронного газа остается пренебрежимо малой по сравнению с теплоемкостью решетки. Разумеется, в области высоких температур, где справедлив закон Дюлонга и Пти.

Живой кристалл _30.jpg

Подумаем над тем, что должно быть в области низких температур, там, где закон Дюлонга и Пти оказывается несостоятельным. Решеточная теплоемкость Ср ~ Т3, а электронная Сэ ~ Т.

Это означает, что должна существовать такая температура Т*, ниже которой электронная теплоемкость будет больше решеточной. Эта температура оказывается очень низкой, для металлов около 10 К. Экспериментально она отчетливо обнаруживается, свидетельствуя о разумности наших представлений о теплоемкости электронов — квантового газа.

Переведем здесь дыхание, вспомним рассказанное и попытаемся представить себе общую картину движения частиц-ионов и частиц-электронов, составляющих металл. Вначале об области высоких температур. Решетка, состоящая из ионов, ведет себя «классически»: атомы колеблются около положений равновесия, модель «атом-шарик» на пружинке отражает этот процесс. А электроны ведут себя «квантово» и воспринимают лишь малую долю той тепловой энергии, которую они могли бы получить от горячей решетки. Существуют два ансамбля частиц: «классические» ионы и «квантовые» электроны. Частицы каждого из ансамблей движутся, подчиняясь своим законам, проявляя свои признаки жизни.

А теперь об области низких температур. Судьба электронного газа остается той же, так как и «низкая» и «высокая» температуры очень удалены от «температуры вырождения» электронного газа. А вот ионная подсистема при переходе в область низких температур отражает уже известные нам черты квантовости.

В конце очерка, почти вне связи с предыдущим изложением, я хочу обратить внимание на одну важную особенность электронного газа. Так как каждый атом, входя в состав решетки металла, отдает в среднем около одного электрона в газ, то плотность этого газа оказывается огромной, равной 1/ω ≈ 1023 см-3 (ω — объем, приходящийся на атом). Это в 104 раз больше, чем число частиц в обычном газе при нормальном давлении. Таким образом, плотность электронного газа такая, какой была бы плотность (число частиц в единице объема) обычного газа под давлением 10 000 атмосфер. При этом оказывается, что такая высокая плотность не мешает электронному газу сохранять свойства идеального!

Электронный газ обладает еще одной особенностью, которая резко отличает его от обычного «классического» идеального газа, с представлениями о котором мы сроднились еще со школьных времен, когда впервые познакомились с законом Бойля — Мариотта. Тогда мы прочно усвоили, что кинетическая энергия частиц идеального газа настолько превосходит потенциальную энергию взаимодействия между ними, что, вычисляя полную энергию газа, потенциальной энергией можно пренебречь. Делать это можно с тем большим основанием, чем более разрежен газ. Таким образом, степень «идеальности» классического газа увеличивается с уменьшением его плотности. А у квантового (в частности, электронного) газа ситуация диаметрально противоположная: чем плотнее газ, тем он идеальнее. Странно? Действительно странно, но так! Дело в том, что, как оказывается, кинетическая энергия εk электронов в ансамбле зависит от числа электронов в единице объема пепо закону εk ~ ne2/3 , а потенциальная энергия εр их взаимодействия, которое подчиняется закону Кулона, изменяется с расстоянием lе между электронами по закону εр ~ 1/lе . Так как пе = 1/lе3, то εр ~ пе1/3.

Очевидно, что с ростом пе , т. е. с увеличением плотности электронного газа, εk возрастает быстрее, чем εр, а это означает, что газ дает больше оснований пренебрегать εр по сравнению с εk , то есть становится более идеальным.

Итак, металлический кристалл «пропитан» электронным газом огромной плотности. Легко понять, что наличие такого газа — необходимое условие существования металлического кристалла. Ведь если бы мы могли удалить свободные электроны из металла, «выдуть» их из решетки, ионы, оставшиеся в узлах, имея одинаковые заряды, под влиянием кулоновского отталкивания разлетались бы прочь друг от друга, решетка «взорвалась» бы и перестала существовать. Электронный газ как бы скрепляет решетку, состоящую из взаимно отталкивающихся ионов.

ЭЛЕКТРОНЫ ДВИЖУТСЯ В МЕТАЛЛЕ

В школьные годы я не испытывал благоговения перед законом Ома. Напротив, мне казалось, что совершенно нет оснований почти самоочевидное утверждение превращать в памятник ученому. Ток пропорционален напряжению! А чему бы ему еще быть пропорциональным? Конечно же, напряжению!

Закон Ома, однако, явно заслуживает большей почтительности. Его видимая простота отражает сложные процессы, которые происходят в кристалле, когда по нему течет электрический ток. Закон Ома был экспериментально установлен в 1826 г. и со временем явился источником важной информации о свойствах живого кристалла. Об этом и рассказ.

Если отвлечься от гипноза школьного учебника, то не так уж очевидно, что ток должен быть пропорционален напряжению. Легко построить вполне логичную последовательность шагов, которая приведет к утверждению, отличному от закона Ома. Логика эта будет основана на совершенной правде. Разве только не вся необходимая правда будет ею учтена. Построим эту последовательность шагов, имея в виду металл, т. е. кристалл, состоящий, как известно, из ионов, которые размещены в узлах решетки, и обобществленных электронов, о которых говорят: «электронный газ».


Перейти на страницу:
Изменить размер шрифта: