ЦИКЛЫ СОЛНЕЧНОЙ АКТИВНОСТИ
Процессы солнечной активности охватывают всю атмосферу Солнца, а также конвективную зону, которая не видна. Энергия в конвективную зону поступает из солнечного ядра через переходную зону. Поэтому можно уверенно сказать, что понять эти процессы — значит понять само Солнце. С изменением солнечной активности меняется и количество энергии, которую оно излучает в межпланетное пространство, а значит, и той ее доли, которую получает Земля. В сущности, меняется не только количество, но и качество этой энергии, поскольку Солнце в зависимости от его активности излучает разную энергию в разных диапазонах электромагнитных волн. При усилении активности излучение в некоторых участках солнечного спектра усиливается в десятки и даже сотни раз. Но этого мало. При усилении солнечной активности усиливаются и потоки заряженных частиц, выбрасываемых из солнечной атмосферы. Этими частицами являются электроны, протоны, ядра легких химических элементов.
В разных процессах, которые составляют сложный комплекс солнечной активности, выбрасывается разный состав частиц, энергии которых также существенно различаются. Это особенно хорошо прослеживается в процессах, которые протекают в солнечной атмосфере в периоды солнечных вспышек. Большинство из вспышек приводит к выбросу в межпланетное пространство потоков высокоэнергичных электронов. Такие вспышки, поскольку они составляют большинство, называют обычными или электронными. Во время другого типа вспышек выбрасываются в межпланетное пространство потоки высокоэнергичных протонов, которые были названы солнечными космическими лучами. Сами вспышки были названы протонными. Время от времени в период протонных вспышек протоны ускоряются до чрезвычайно высоких энергий, при этом их скорости становятся сравнимыми со скоростью света.
Таким образом, важно не только изменение суммарной, общей энергии, которую излучает Солнце при разной активности, но и то, в каком виде эта энергия излучается.
Большинство процессов, которые являются разными звеньями солнечной активности, сосредоточено, локализовано в определенной области как в солнечной атмосфере, так и под ней, в солнечных недрах. Но очертание этой области еще не дает всей информации об активности. Важно знать, как возникли эти процессы, где они зародились и затем как они развивались во времени на разных этажах активной области. Среди этих процессов имеются как медленные, так и развивающиеся в виде взрывов, то есть импульсивно. Чтобы как-то все это подчеркнуть, специалисты наряду с понятием активной области используют и понятие «импульс активности». Мы наблюдаем за активными областями только из одной точки — с Земли. Поэтому видим (с помощью глаза или инструментов) только проекцию всей объемной конструкции на плоскость, перпендикулярную лучу зрения. Когда активная область, которую мы наблюдаем, находится на центральном меридиане (и близко к экватору), то мы наблюдаем ее строго сверху. Поскольку светящиеся образования проектируются на солнечную поверхность, то вместо протуберанцев мы видим яркие волокна, вместо объемных, весьма протяженных по высоте образований — факельные площадки и т. д. Если же активная область находится ближе к краю видимого диск, то ее можно наблюдать с Земли только наискосок. При этом по наблюдаемой проекции ее на плоскость, перпендикулярную лучу зрения, мы должны сделать правильные заключения о ее объемной конструкции. В том случае, когда активная область находится на самом ребре видимого диска (на лимбе), мы можем непродолжительное время наблюдать ее сбоку. Тогда-то мы и видим протуберанцы, а не волокна и т. д.
Несомненно, большие сложности возникают и из-за того, что мы можем наблюдать процессы в атмосфере Солнца только на видимой его полусфере. Поскольку процессы во всей атмосфере Солнца (как видимой, так и невидимой полусфере) составляют единый комплекс, то понять их по его одной только половине дело не простое.
Мы сделали только некоторые замечания о проблемах, связанных с исследованием солнечной активности, для того, чтобы у читателя сформировалось правильное представление как о сложности проблемы, так и о возможных путях ее решения. Один из таких путей — установление измерительных приборов на летательных аппаратах, которые облетели бы Солнце со всех сторон. Кроме того, надо развивать методы наблюдений, которые позволяли бы нам четко и уверенно определять те высоты в атмосфере Солнца, откуда мы получаем информацию. Имеются и другие возможности, которые впоследствии будут, конечно, реализованы.
Но если мы хотим установить, как изменяется солнечная активность во времени, то нам придется проявить чрезвычайное терпение. Дело в том, что эти изменения происходят с разными временными интервалами, среди которых есть не только 11-летний цикл солнечной активности, но и циклы продолжительностью в десятки, сотни и даже тысячи лет. Конечно, мы не можем ждать сотни и тысячи лет, чтобы установить изменение солнечной активности с помощью совершенных современных измерений. Для таких исследований приходится использовать те данные (прямые и косвенные), которые уже накоплены людьми за их историю. Естественно, мы не можем надеяться найти среди этих данных результаты измерения излучений Солнца в отдельных спектральных линиях или результаты измерения магнитных полей, температуры, скорости движения солнечного газа в разных слоях солнечной атмосферы и т. д. На что же мы можем рассчитывать? На то, что было видно на солнечной поверхности как невооруженным глазом, так и с помощью простых, бесхитростных телескопов.
ОДИННАДЦАТИЛЕТНИЙ ЦИКЛ
Тот факт, что солнечная активность изменяется во времени, был впервые установлен в 70-е годы XVIII века датским астрономом Р. Горребовом, который проводил наблюдения за поверхностью Солнца в Копенгагене в 1761–1769 годах. Но его современники-ученые не признали это, а в 1805 году при артиллерийском обстреле Копенгагена эскадрой адмирала Нельсона данные наблюдений погибли. Потребовались десятилетия, чтобы вновь открыть уже открытое. Это произошло в 1843 году, когда аптекарь и одновременно астроном-любитель Генрих Швабе опубликовал данные своих ежедневных наблюдений Солнца в течение 17 лет. Он и считается признанным первооткрывателем периодичности (цикличности) изменения солнечной активности. Впоследствии Рудольф Вольф организовал наблюдения Солнца на профессиональном уровне. Он же ввел индекс относительных чисел солнечных пятен, о котором уже говорилось выше.
Регулярные данные наблюдений, проводимых в Цюрихе, имеются с 1749 года. 11-летние циклы солнечной активности принято отсчитывать от минимума солнечной активности. Наблюдаемый минимум имел место в 1755 году. От него и начали отсчет первого 11-летнего цикла. За ним последовали второй, третий и т. д. Сейчас идет 22-й цикл солнечной активности. Он начался в 1986 году. До 1755 года наблюдался еще один цикл, но не полностью (всего 6 лет). Он был назван нулевым. Еще более ранние наблюдения не были регулярными. Тем не менее по ним (с меньшей достоверностью) были установлены еще 22 11-летних цикла. Их нумерация идет в обратную сторону, и прибавляется знак минус. Таким образом, 22-й цикл начался в 1501 году. Несмотря на отсутствие данных регулярных наблюдений, восстановить изменение солнечной активности с 1501 года удалось на основании тех последствий, которые они вызывают в земной атмосфере и биосфере. Об этих последствиях будет рассказано позднее. Здесь только укажем, что при усилении солнечной активности в атмосфере Земли (в высоких широтах) возникают полярные сияния. Они вызываются заряженными частицами, которые выбрасываются из Солнца при усилении солнечной активности. Эти данные о полярных сияниях и были использованы для того, чтобы установить, какова была в это время солнечная активность.
В 11-летнем цикле солнечная активность нарастает от минимума к максимуму (ветвь роста) быстрее, чем спадает от максимума к минимуму (ветвь спада). Специалисты говорят не о периодических, а о циклических изменениях солнечной активности потому, что продолжительность периода этих изменений меняется в определенных пределах, то есть период не является постоянным. Такие изменения называют циклическими.