Третий закон Ньютона, как видите, проявляет свое действие очень широко. Однако лишь до тех пор, пока на сцену не выходят силы инерции — то единственное в механике, что ему не подчинено, действия этих сил не сопровождаются противодействиями. Почему это происходит, вы узнаете чуть позже. Предварительно несколько существенных замечаний.

По Пушкину

Читатель уже вобрал в свою голову столько премудрости, что я задам ему сейчас глубочайший философский и физический вопрос: что есть движение?

В самом деле, что? Мы все время говорим «движется», а понимаем ли, что значит это слово?

У Пушкина:

— Движенья нет, — сказал мудрец брадатый.

Другой смолчал и стал пред ним ходить.

Иначе (и длиннее) говоря, мудрец стал с течением времени менять свое пространственное положение по отношению к «брадатому» коллеге. Этим было без слов сказано все. Этим была определена сущность механического движения — именно так, как она понимается в физике.

Запомните: движение есть изменение с течением времени положения тела в какой-либо системе отсчета. Последние слова совершенно обязательны. Очень важно четко представить себе: без системы отсчета пространства и времени движения не существует.

Для «брадатого мудреца» системой отсчета служила, видимо, скамья и земля, на которой он сидел, плюс удары его сердца, игравшие роль часов. В этой системе второй мудрец менял свое положение. А значит, двигался. Ничего иного в понятие механического движения физик не вкладывает.

Система отсчета — это некая материальная основа для измерения расстояний и длительностей. Скажем, набор скрепленных линеек, угломерных инструментов, часов. Даже если их нет, их всегда можно домыслить, вообразить, когда речь идет о движении. Так мы и делали раньше, рассуждая о падающих камнях и летящих копьях. Так будем делать и впредь — и часто с большей определенностью и конкретностью.

Сказанное сейчас дает пищу для сложных и глубоких раздумий. Мы займемся ими позже, в следующих частях этой книжки. Но самые существенные особенности систем отсчета, их связь с законами движения надо отметить сразу.

Инерциальность и неинерциальность

Представьте себе огромную кастрюлю, парящую где-то в космосе далеко от планет и звезд. Может быть, это внутренняя полость фантастической «летающей тарелки».

Иллюминаторы задраены. Нет никаких возможностей посмотреть изнутри на небо, увидеть усыпанную звездами небесную сферу.

Вы внутри этой кастрюли. Обутые в башмаки с намагниченными подошвами, шагаете по жестяному дну. И имеете следующее научное задание: установить ускорение либо вращение кастрюли или доказать, что то и другое отсутствует.

Поразмыслив, вы, я думаю, решите заданную задачу.

Можно сделать, например, так: нарисовать на дне идеальную прямую (скажем, с помощью светового луча) и бросить вдоль нее копье. Так вот, если копье, летя по инерции, будет с неизменной скоростью точно следовать нарисованной прямой линии, наша кастрюля не вращается и не испытывает ускорений.

Если же брошенное копье куда-то свернет от прямой, закружит, разгонится или затормозится, резонно заключить, что «на самом деле» вращается и ускоряется кастрюля.

Логика умозаключений тут основывается на первом законе механики, на признании инерции. Выводы выглядят вполне разумными (до некоторого предела, впрочем, который в своем месте — еще очень не скоро — будет отмечен). И здесь четко проступает роль системы отсчета в изучении движения.

Теперь важное определение. Постарайтесь его запомнить.

Кастрюля, которая после опыта с копьем выглядит невращающейся и неускоряющейся, плюс часы, по которым зафиксировано постоянство скорости копья, есть пример инерциальной системы отсчета. В ней движение по инерции равномерно и прямолинейно. Значит, исполняется первый закон Ньютона.

Все остальные системы отсчета физики называют неинерциальными.

Опыт Леона Фуко

За неинерциальной системой отсчета совсем не обязательно отправляться в космос. Не требуется никаких межзвездных кастрюль и «летающих тарелок». Можно остаться на Земле, пойти в городской сад и покататься на «колесе смеха» — горизонтальном скользком вращающемся диске. Вы на себе почувствуете неинерциальность системы отсчета, связанной с диском, — очень быстро окажетесь отброшенным прочь от центра вращения.

Можно поехать в Ленинград и посетить Исаакиевский собор. Там ясно видно, что и система отсчета, связанная с Землей, тоже неинерциальна.

Дорого бы дал Галилей за идею опыта, поставленного в 1851 году французским физиком Леоном Фуко. На протяжении нескольких минут этот опыт просто и наглядно доказывал то, что великий итальянец стремился доказать всю жизнь — вращение земного шара. Теперь знаменитый эксперимент Фуко постоянно демонстрируется в Исаакиевском соборе.

На длинном (98 метров) подвесе раскачивается массивный шар. В каждом качании он летит из края в край обширного помещения над полом, расчерченным четкими прямыми линиями. Маятник Фуко — вроде копья, которое мы с вами швыряли в космосе. Разгоняется он, правда, земным тяготением, но благодаря инерции сохраняет плоскость своих колебаний. Земля же, медленно поворачиваясь, сдвигает из-под нее пол собора. Летящий шар чуть-чуть сворачивает от прямых линий, начерченных на полу. Через две-три минуты накапливается весьма заметное отклонение.

Простейший вывод: Земля вертится.

Более тонкий вывод: система отсчета, связанная с земным шаром, неинерциальна.

Но справедливы ли в этом случае уравнения механики? Можно ли применить формулу второго закона? Действуют ли на маятник Фуко (или лучше все-таки на наше «космическое копье» — дабы не мешало притяжение Земли) какие-то силы?

Да. Пусть второй закон торжествует: раз есть ускорения, значит, есть и силы. Эти силы, под влиянием которых наше копье «само» ускоряется, тормозится, сворачивает вбок в неинерциальной системе отсчета, принято называть силами инерции.

С такой точки зрения на колесе смеха вы оказались во власти центробежной силы инерции. Она-то и согнала вас с диска. А маятник Фуко был подвержен силе инерции Кориолиса (по имени физика, который ее впервые изучил). Она действует на тела, движущиеся во вращающейся системе отсчета. Благодаря ей маятник Фуко и смещает в такой системе плоскость своих качаний.

Конечно, вы можете покинуть вращающуюся Землю и рассматривать качания маятника Фуко в какой-то не- вращающейся, инерциальной системе отсчета (для малых промежутков времени в качестве ее опоры годится хотя бы Луна). Тогда вы вправе заявить, что смещения пола собора вызваны никакими не силами, а именно вращением земного шара. Однако этот бесспорный факт не делает силы инерции фиктивными, что иногда неосторожно говорят. Коль уж явление разыгрывается в неинерциальной системе отсчета, силы инерции присутствуют обязательно и бывают порой очень эффективны — скажем, рвут на части быстро вращающийся маховик.

Видите: «пассивное непослушание», каким выглядело свойство инерции в инерциальной системе отсчета, для неинерциальной обернулось активным действием.

И еще. Обратите, пожалуйста, внимание на существенную деталь: силы инерции в равной мере ускоряют тела разной массы. Когда над дном нашей вращающейся и ускоряющейся «космической кастрюли» летят рядом свободно брошенные ядро и пуля, пути их и скорости меняются относительно кастрюли совершенно одинаково. При взгляде извне это ничуть не удивительно. Ведь кастрюля-то одна, она вращается или ускоряется одинаково и для ядра, и для пули. Все же подмеченный сейчас факт очень многозначителен. В нем раскрывается некое (пока чисто формальное) сходство между инерцией и тяготением (тяжесть столь же «равнодушна» к массам тел, когда сообщает им ускорение). Придет время, об этом сходстве мы поговорим побольше и поподробнее.

Действие без противодействия

И, наконец, самое, на мой взгляд, странное качество сил инерции. Это единственный вид сил, не подчиняющийся, оказывается, третьему закону Ньютона. Когда брошенное копье сворачивает в сторону от прямой, проведенной по дну вращающейся «кастрюли», оно не воспринимает никакого противодействия, потому что ни с чем как будто не связано.


Перейти на страницу:
Изменить размер шрифта: