Эта засада не преследовала никаких агрессивных целей: ни пленять, ни тем более убивать росу мы не собирались — просто хотели проследить за тем, как на рассвете появляются росинки на листьях и паутине и как они исчезают с восходом солнца. Следили и за теми росинками, которые выпадают после дождя, когда воздух влажный и теплый. И вооружение у нас было самое мирное: кинокамера, фотокамера и лампа со вспышкой. А наши трофеи — отснятые пленки и свежие наблюдения из числа тех, которые лишенная эмоций оптика не регистрирует.
Вначале немного сведений о росе, заимствованных из школьного учебника. В окружающем нас воздухе всегда имеется некоторое количество влаги. Есть, однако, предел ее содержанию, и если почему-либо в воздухе влаги оказалось больше этого предельного количества, она начнет выпадать, оседая на различных предметах отдельными каплями. Чем выше температура воздуха, тем большее количество влаги может в нем находиться, не выпадая в росу. Если же воздух, содержащий определенное количество влаги, охладить, при некоторой температуре имеющийся в нем запас влаги станет предельным и появится роса. Этот процесс подобен тому, что происходит в стакане воды с растворенной в ней солью. Охлаждая воду, мы увидим, что при некоторой температуре на дне стакана начнут появляться кристаллики соли — подобие росы.
Так с восходом солнца исчезает роса на траве
А так — на паутине
Любопытное наблюдение. Когда солнце, согревая воздух, начинает высушивать росу на траве, создается впечатление, будто росинки становятся крупнее. В какой-то мере это только впечатление, потому что раньше других испаряются мелкие капли, а оставшиеся крупные росинки способствуют впечатлению, будто средний размер увеличился. А в какой-то мере увеличение росинок действительно происходит, во всяком случае может происходить, поскольку избыточная упругость пара вблизи изогнутой поверхности росинок ( Δ Р ) и радиус кривизны их поверхности связаны соотношением Δ Р ≈ 1/ R , то вблизи крупных росинок Δ Р меньше, чем вблизи мелких. И поэтому может происходить перенос влаги от мелких росинок к крупным. Именно об этом было подробно рассказано в очерке «Капля пустоты» на примере реальных капель и на примере пор.
Дождевые росинки обычно крупнее тех, которые возникают на рассвете. Капли падающего дождя редко задерживаются на паутине: иногда они ее рвут, а иногда, задержавшись на мгновение, продолжают свой полет на землю, и лишь капли моросящего дождя оседают на ее нитях. А когда дождь прошел и воздух в избытке напитан влагой, на паутине появляется обильная роса: осевшие из влажного воздуха росинки располагаются вдоль нитей паутины, изгибая их. Самые крупные капли оседают на переплетениях нитей — в узлах паутины. Они и живут дольше других, когда со временем росинки, испаряясь, исчезают с паутины.
Две подборки фотографий, которыми иллюстрируется очерк, небольшая часть наших трофеев.
Росинка в солнечном луче
После лекции о капле, которую я как-то читал юношеской аудитории, ко мне подошел один из слушателей и подарил фотографию. На фотографии была запечатлена росинка на листике травы. Отчетливо видны два ярких пятнышка— блика, создающие впечатление, будто росинку пронзил солнечный луч, сверкающий на входе и выходе из нее.
— Возьмите,— сказал он,— снимок сделан ранним утром, когда солнце только появляется. Много раз я наблюдал, как росинки, осевшие на траве, прокалываются насквозь солнечным лучом. Решил сфотографировать, и будто бы удалось. Странно только, что на входе луча пятнышко менее яркое, чем на выходе.
Он отдал мне фотографию и, немного смущаясь, добавил:
Мне показалось, что травинка с каплей распрямляется по мере того, как восходит солнце. Такое впечатление, будто солнечный луч поднимает каплю и травинке становится легче.
Через некоторое время после этой случайной встречи я постарался разобраться в том, что снято на подаренной мне фотографии. Для этого в лаборатории поставили контрольные опыты, о которых я и расскажу в этом очерке, посвященном росинке в солнечном луче.
Вначале четкое утверждение: два блика, видимые па поверхности капли, конечно же, не соответствуют местам входа и выхода какого-то луча, которого вообще нет, так как солнце посылает пучок света, падающий на всю обращенную к нему поверхность капли. Блики появляются совсем по другой причине.
По отношению к падающему солнечному свету капля играет роль сферической линзы, которая дважды — на входе и выходе — преломляя падающие на нее лучи, приближает их к прямой, идущей от солнца к капле. Поэтому вблизи поверхности капли, обращенной от солнца, там, где лучи выходят из нее, освещенность резко увеличивается. Это и обнаруживается по яркому блику на поверхности капли. От этого блика, как от освещенного участка вогнутого сферического зеркала (с соблюдением известного закона геометрической оптики, который гласит, что «угол падения равен углу отражения»), в объем капли распространяются лучи.
Капля на травинке. Впечатление, будто ее пронзил солнечный луч
Эти лучи могут многократно отражаться от участков сферической поверхности капли, наполняя ее солнечным светом.
Поверхность капли изогнута и спокойна. На ней всегда найдется такой участок, который отразит солнечный луч в наш глаз. На отражающем участке поверхности, обращенной к солнцу, возникнет блик, подобный блику на солнечной дорожке. Блик будет устойчивым, так как форма поверхности капли со временем не изменяется и отражающий участок оказывается недвижимым.
Блики на капле при различных положениях глаза наблюдателя относительно солнечного луча
Итак, блик, который на теневой стороне капли,— следствие преломления лучей, а второй блик на участке поверхности капли, обращенной к солнцу,— следствие отражения солнечных лучей этой поверхностью. На первом сконцентрирована интенсивность почти всех лучей, упавши х на полусферическую поверхность, обращенную к солнцу, а второй блик отражает лишь те лучи, которые упали на малый участок поверхности капли. Поэтому первый блик ярче второго. Сказанное можно подтвердить простыми опытами, которые были поставлены в нашей лаборатории. Экспериментировали мы со специально приготовленной моделью капли. Сферическую стеклянную колбу заполнили водой и таким образом стали обладателями сферической линзы — модели капли. Колбу осветили интенсивным параллельным пучком света — на ее поверхности загорелось два блика. Можно было сделать так, чтобы каждый из них светился вне зависимости от свечения другого. Блик, обусловленный отражением света, можно было убрать, приблизив палец к тому месту колбы, где блик светился. А тот блик, в котором собраны все лучи с поверхности освещаемой полусферы, можно было убрать, лишь полностью преградив путь лучам на эту поверхность. Если же оставался небольшой освещаемый участок этой поверхности — где-нибудь сбоку или посредине,— блик загорался.
И еще один факт. Яркий блик оставался неподвижным, с какого бы места мы па освещенную колбу ни смотрели, а другой смещался, если, глядя на колбу, двигаться вокруг нее. Причину этого легко понять, посмотрев на ход лучей, схематически изображенных на рисунке.
Предположение юного фотографа, что солнечный луч пронзил росинку, оказалось красивым поэтическим вымыслом. В действительности же все происходит в соответствии с законами геометрической оптики. Впрочем, для естествоиспытателей они не менее красивы, чем поэтический вымысел.