Г. А. Вильсон сделал огромный шаг на пути к достоверному измерению заряда электрона. Начал он с усовершенствования методики. В камере, где находилось облако капель, сконденсированных на ионах, Вильсон параллельно располагал две латунные пластинки, к которым можно было подключить полюсы источника напряжения 2000 в. Экспериментальная процедура Вильсона состояла из последовательности двух опытов. В первом опыте, получая резким расширением облако заряженных капель (как это делал и Томсон), он определял скорость его падения ( υ 1 ) в пространстве между латунными пластинками в отсутствие электрического поля. Во втором опыте он проделывал то же, однако в этом случае электрическое поле было включено и капли в облаке падали со скоростью υ 2 не только под влиянием одной лишь силы тяжести т g , как в первом случае, а под влиянием двух сил mg + еЕ, где Е — напряженность электрического поля. В обоих опытах Вильсон наблюдал не за всем облаком, а лишь за теми каплями, которые находятся в его вершине. Капли в вершине облака несут на себе самый маленький заряд, а следовательно, и испытывают на себе действие самой маленькой силы.
Должно иметь место равенство:
Но почему скорости, а не ускорения пропорциональны силам? Дело в том, что речь идет об установившемся движении в среде, когда ускорение равно нулю, а величина скорости пропорциональна силе,— это следует из формулы Стокса, которую в очерке о капле-шарике я просил запомнить, так как далее она понадобится. Именно здесь она и понадобилась.
В правой части формулы все известно, кроме массы капель. Как и его предшественник, Г. А. Вильсон определял массу капель, предварительно найдя их радиус по формуле Стокса, т. е. по скорости ее свободного падения в воздухе. Так Вильсон сумел обойтись без произвольного допущения своих предшественников, которые предполагали, что число капелек равно числу отрицательных ионов. Сформулированный им вопрос природе звучит четче. К сожалению, однако, достаточно было оставшихся в эксперименте неточностей, чтобы на ответ наложились помехи. Вильсон, например, предполагал, что в двух последовательных расширениях камеры (ему для нахождения υ 1 и υ 2 нужны были два расширения!) возникают облака, абсолютно совпадающие по характеристикам. В действительности это не так хотя бы потому, что вариант, при котором облака будут идентичны, единственный, а вариан там, при которых они будут отличаться, нет числа! Кроме того, за время падения водяные капельки могли немного испаряться или, например, мелкие капли могли исчезать, съедаемые более крупными.
Найденное Вильсоном максимальное значение заряда было вдвое больше минимального. Для ищущего истину такой результат неутешителен.
Этап пятый. 1909 год. Р. А. Милликен.
Вслед за Вильсоном Милликен сделал несколько шагов вперед на пути к точной формулировке вопроса. Его опыты — их логика и исполнение — исключительно умны и красивы.
Существуют естествоиспытатели, которые пытаются увидеть явление в целом, посмотреть на него с неожиданной стороны. Они легко и точно улавливают связи нового явления с известными, ставят эксперимент так хитро и неожиданно, что поиск заканчивается очень убедительным доказательством факта существования явления. Это очень ценная и нужная категория исследователей, но в их лабораториях устанавливаются факты лишь качественно, выяснение точных характеристик явления их мало заботит. Милликен относится к принципиально иной категории исследователей. Я очень внимательно читал его книгу — подробный отчет об экспериментах с заряженными каплями, и меня не покидало чувство восхищения перед великолепным экспериментальным мастерством, скрупулезным в такой мере, что иному оно может показаться выражением не столько оправданной тщательности, сколько болезненной придирчивости. Его предшественники, по существу, в своих опытах могли определять лишь статистически среднюю величину зарядов, поскольку они не отличали каплю, образовавшуюся на однозарядном ионе, от той, которая сформировалась на ионе многозарядном, так как экспериментировали с облаком — ансамблем капель различных и по величине и по заряду. Милликен решил экспериментировать с одной каплей, подолгу удерживая ее между пластинами конденсатора.
Вначале и Милликен экспериментировал с водяными каплями. Все, что с ними может происходить, он подробнейшим образом исследовал. Для надежной обработки результатов измерений необходимо точно знать размер капель, и Милликен его определял по скорости падения капли в воздухе. Между экспериментально найденной скоростью и значением радиуса — расчет по формуле Стокса. Возникает сомнение: быть может, эта формула ненадежна в применении к микроскопическим каплям? Милликен ставит сотни опытов с целью внести нужные поправки в формулу Стокса и достигает необходимой точности в определении радиуса. Вот одно из значений радиуса капли, изучавшейся Милликеном: 0,000197 см.
Капля может в процессе измерения испаряться, терять массу. Ставится такой опыт. Одна заряженная капля уравновешивается полем и останавливается между пластинами конденсатора. Со временем капля начинает подниматься вверх. Это значит, что, частично испарившись, она стала легче, и сила, создаваемая электрическим полем, начинает превосходить силу тяжести. В опыте поле уменьшается ровно настолько, чтобы капля опять стала неподвижной. Измерив необходимое для этого уменьшение напряженности поля, Милликен определяет скорость испарения капли и учитывает ее при обработке результатов измерений.
Во время опыта капля может изменить свой заряд. Ставятся специальные опыты для исследования этой возможности. Ведется длительное наблюдение за движущейся каплей и устанавливается, что в случайные моменты времени капля скачкообразно меняет скорость своего падения,— это естественно объясняется потерей или приобретением заряда. Становится ясным, что скачкообразные изменения скорости оказываются в точности такими, какими они должны быть, если заряд может принимать лишь значения, кратные некоторому минимальному. Наблюдаются капли, несущие самое различное число элементарных зарядов — от 1 до 150. Так как точность измерения ограничена, то при большем числе зарядов изменение их числа наблюдается с меньшей достоверностью. Однако, как пишет Милликен, «когда число их не превышает пятидесяти, то ошибка тут так же невозможна, как и при подсчете собственных пальцев». Эти опыты — безусловное основание для Милликена утверждать, что электрический заряд «обладает резко выраженным зернистым строением».
Милликен оказался тем счастливым естествоиспытателем, который сумел надежно доказать «зернистость» электрического заряда и определить число —заряд «зернышка»— электрона. Вот это число: е = (4,770 + 0,005)•10-10 электростатических единиц. Указана оправданная погрешность измерения, и это придает числу достоверность.
ЖИВЫЕ КАПЛИ
Столяру Джузеппе попалось под руку полено, которое пищало человеческим голосом.
Алексей Толстой
Капля живого серебра
На языке многих народов ртуть именуется живым серебром, видимо, за блеск и за способность легко перекатываться по твердой поверхности.
В этом очерке — рассказ об опыте, в котором «живость» ртути самоочевидна. Этот опыт в нашей лаборатории проделывали много раз и наблюдали за ним и невооруженным глазом и с помощью кинокамеры. Ставится опыт так. В плоскодонной стеклянной кювете — капелька ртути и неподалеку от нее кристаллик двухромовокислого калия. Затем в кювету наливается такое количество слабого раствора соляной кислоты в воде, чтобы и капля и кристаллик были покрыты раствором. Надо позаботиться