Начали мы опыт с пористым, а окончили с беспористым кристаллом! Как быстро это произойдет? Все зависит от размеров поры и температуры кристалла. Например, пора, радиус которой один микрон, в медном кристалле при тем­пературе 1000° С исчезает приблизительно за 30 мин.

Все рассказанное о формуле, об аналогии между реаль­ными каплями и каплями пустоты лежит в основе целого раздела современной физики твердого тела— физики спе­кания, которая объясняет, как пористые кристаллические тела самопроизвольно при высоких температурах превра­щаются в плотные. Оказывается, капли пустоты могут испаряться в кристалл!

Удобная «постель» для капли

В названии очерка нет надуманности — его содержание находится в полном соответствии с названием. Дело в том, что гладкая, чистая, полированная поверхность твердого тела для жидкой капли неудобна. Попав на нее, капля бу­дет пытаться изменить, улучшить подложку, сделать ее более удобной, даже если для этого ей придется трудиться очень долго.

 

Капля _17.jpg

Взаимное расположение сил, действующих на контур капли, лежащей на гладкой твердой поверхности

Напомню, что нет ничего удобнее для капли, чем быть взвешенной в пространстве, в невесомости: ни с чем она не соприкасается, никакие силы ее не искажают и ни к ка­ким изменениям она не стремится. А на пластинке с пло­ской поверхностью все не так, даже если пластинка с кап­лей находится в невесомости.

Вначале подумаем над тем, чем гладкая поверхность не­удобна для жидкой капли. Казалось бы, капля подвижна и должна, переливаясь, как-то приспособиться к плоской поверхности, сделать свое пребывание на ней удобным. Оказывается, что одним изменением собственной формы добиться этого капля не может.

Посмотрите на приведенный рисунок. На нем изображе­на капля жидкости, смачивающей твердую поверхность (угол φ — острый). Стрелками обозначены силы, обуслов­ленные поверхностным натяжением на границе подлож­ка — капля (α21), подложка — воздух (α20) и капля — воздух (α10). Все дальнейшее можно было бы рассказать, имея в виду и каплю, не смачивающую твердую поверх­ность. Но мы остановимся на случае, который изображен на рисунке. Из него с очевидностью следует, что три силы, которые соответствуют поверхностным натяжениям твер­дое — воздух, твердое — капля и капля — воздух, ни при какой форме капли не могут прийти в равновесие, так как первые две из них направлены одна против другой и лежат в одной плоскости, а третья — под углом к ней. Именно поэтому имеется нескомпенсированная сила, приложенная к контуру капли,— на рисунке она обозначена жирной стрелкой и, пожалуй, может считаться количественной мерой степени неудобства подложки. Капле надо сделать что-либо с собой или с подложкой, чтобы избавиться от нее.

Можно рассказать об этом по-другому. Выпуклая по­верхность капли создает давление, которое прижимает ее к плоскости. Это так называемое капиллярное (лапласовское) давление — мы уже с ним встречались. Участок же поверхности капли, который граничит с твердой под­ложкой, такого давления не создает: оно должно быть пропорциональным 1/ R , а радиус кривизны плоского участка

поверхности капли равен бесконечности, и, значит, давле­ние равно нулю. К одному участку поверхности давление приложено, к другому — не приложено, а это неудобно. Капля, подвешенная в невесомости, таких неудобств не испытывает.

Два разных рассказа об одном и том же явлении можно проиллюстрировать двумя опытами. Опыт первый иллю­стрирует первый рассказ, опыт второй — второй.

Опыт первый. На полированной поверхности стеклян­ной пластинки, сухой и чистой, располагается тонкий лепесток полимерной пленки. Хорошо, если его толщина будет не более 5 микрон. На поверхность лепестка надо посадить каплю воды и наблюдать за происходящим. Кап­ля начнет изгибать пленку, стремясь завернуться в нее. Отчетливо это иллюстрирует кинограмма. Работает при этом та сила, которая на рисунке обозначена жирной стрелкой. Если бы полимерная пленка абсолютно подчи­нялась воле капли, произошло бы следующее: капля при­няла бы форму сферы, равномерно покрыв себя слоем поли­мерной пленки. В действительности же, так как плоская пленка не может приобрести сферическую форму, капле не удается полностью в нее завернуться, но все же устра­ивается она при этом более удобно, чем на плоской поверх­ности.

Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, за­ печатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водя­ной капли в пленку. Из рисунка следует, что α21 + α10•  cos φ = а20 . Так как cos φ 0 , то α21 < α20 и, следова­тельно, заведомо меньше, чем сумма α10 + α20 . Это оз­начает, что выгодно вместо двух свободных поверхностей капли и пленки создать одну поверхность, вдоль которой капля и пленка соприкасаются. А для этого капле следует в пленку завернуться, что она и делает.

 

Капля _18.jpg

Последовательность моментов ваворачивания водяной капли в лепесток из полимерной пленки

Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и вы увидите, что вблизи капель листики изогнуты значитель­но больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно гото­вили себе «постель» поудоб­нее.

Опыт второй был постав­лен чешскими физиками. На полированную поверхность массивного кристалла железа наносилась капля расплав­ленного свинца. Железо было раскалено до температуры более 1000° С, и поэтому свин­цовая капля оставалась жид­кой. Кристалл железа — не полимерная пленка, и изо­гнуть его вокруг себя капля не может. Поэтому поступает она иным способом: выкапы­вает под собой ямку такой формы, чтобы вдоль контуров капли все три силы скомпенсировались так, как показано на рисунке. Эта «удобная» ям­ка должна иметь такую фор-

му, чтобы давление, обусловленное изогнутой поверхностью жидкий свинец — воздух, было в точности равно тому давлению, которое обусловлено искривленностью поверх­ности жидкий свинец — твердое железо, т. е. дна ямки.

Равенство двух этих давлений означает, что α10/R10= α12/R12   . Итак, давления равны, а кривизна двух поверхностей различна, потому что различны соответствующие поверхностные энер­гии.

 

Капля _19.jpg

Взаимное расположение сил, действующих на контур капли, которая «удобно устроилась» на твердой поверхности

Выкопав под собой ямку, капля как бы перенеслась в невесомость — как и в невесомости, капиллярное давление оказалось одинаковым вдоль всей поверхности, огра­ничивающей каплю.

Естественно возникает вопрос: каким образом капля вы­копала ямку? Ответим на него. Вначале, когда капля была расположена на плоской поверхности железа, она прижи­малась к нему тем давлением, которое обусловлено искрив­ленностью поверхности свинец — воздух. Под влиянием этого давления железо из-под свинцовой капли перемещалось в области вокруг нее. Перемещалось в процессе диф­фузии поатомно, атом за атомом — опыт ставился при высокой температуре, когда диффузия в железе происхо­дит достаточно активно.

Надо подчеркнуть, что в описанном опыте капиллярное давление, которое обусловливает перемещение железа из-под свинцовой капли, существенно больше давления, обусловленного ее весом, так как капля свинца была очень «маленькая» в том смысле, в каком мы об этом гово­рили в очерке об опыте Плато.


Перейти на страницу:
Изменить размер шрифта: