Огнепоклонники pic15.png
Пульт управления ЭРД (макет)

Позднее Глушко детально исследовал проблему выбора вещества. Чем больше его атомный вес, тем выше температура взрыва. Железо, медь, никель дают температуру в 3,5 раза меньшую, чем свинец, ртуть, вольфрам. В ЭРД выгодно получать с единицы массы рабочего вещества возможно больший объем газообразных продуктов при той же температуре. Чем легче атомы, тем больший объем они и займут при меньшем нагреве, что удлиняет срок службы камеры сгорания. Каждый материал дает и свою скорость истечения продуктов его взрыва. Например, железо с температурой плавления 2450 °C имеет минимальную скорость истечения 4580 м/с.

Огнепоклонники pic16.png
Первый в мире ЭРД и «гелиоракетоплан» конструкции В. П. Глушко (макеты).

Восемнадцатого апреля 1929 г. Глушко направляет свою работу по ЭРД как авторскую заявку в Комитет по делам изобретений. Экспертизу проводили такие крупные ученые, как профессор М. В. Шулейкин (1884–1939) и Н. И. Тихомиров. Заявка была одобрена, и Тихомиров написал в своем заключении «о повелительной необходимости безотлагательно приступить к опытным работам». В результате этой экспертизы Глушко и был направлен (по сути дела непосредственно со студенческой скамьи) в ГДЛ, где был назначен начальником отдела электрических и жидкостных ракет. Он намеревался использовать ЭРД в качестве двигателей предложенного им космического аппарата — «гелиоракетоплана», где питающие солнечные батареи размещались в плоскости круга с центром — батареей ЭРД.

Следует подчеркнуть, что этим изобретением Глушко более чем на три десятилетия опередил ученых Запада. Впоследствии в качестве рабочего вещества в ЭРД использовались потоки плазмы или ионов, ускоряемых электромагнитным или электрическим полями. В нашей стране такие ЭРД были установлены на автоматической межпланетной станции «Зонд-2» (шесть плазменных двигателей) и на космическом корабле «Восход-1» (ионные двигатели), стартовавших в 1964 г. Работали ЭРД в составе навигационных систем этих космических аппаратов для коррекции траектории их полета. В 1966 г. ЭРД устанавливались на советской автоматической ионосферной лаборатории «Янтарь-1». Одной из задач полета являлось исследование взаимодействия реактивной струи ЭРД с плазмой ионосферы.

В США Национальным управлением по исследованию космического пространства (НАСА) в 1970 г. был впервые испытан экспериментальный ртутный ионный ЭРД 5ЕНТ, продемонстрировавший огромную работоспособность, что позволило НАСА рассматривать этот двигатель как перспективный для обеспечения дальних космических полетов. В ФРГ был разработан ЭРД НЬТ-10 массой без оснастки 1300 г, а с оснасткой — 18,2 кг. Потребляя мощность 3600 Вт при тяге 1 мГ, он обладал большим удельным импульсом (отношением тяги, развиваемой двигателем, к секундному расходу топлива) — 3100 с, что значительно превышало по этой важнейшей характеристике экономичности возможности ракетных двигателей других типов. Интерес к разработке ЭРД за рубежом усиливает значение отечественного приоритета в этой области. Если в настоящее время ЭРД находят применение только в навигационных системах космических аппаратов, то в обозримом будущем они смогут выполнять и функции маршевых двигателей, причем это почти единственно пригодные двигатели для сверхдальних полетов, например за пределы нашей Галактики.

Малая тяга ЭРД исключает возможность использования их в пределах зоны сильного гравитационного притяжения, т. е. на поверхности Земли, поэтому Глушко хотя и предсказал им большое будущее при работе в космическом пространстве, прекратил на время доработку ЭРД и сосредоточил внимание на создании мощных ракетных двигателей на жидкостном топливе (ЖРД), позволяющих преодолеть зону гравитации и проникнуть в космос, где ЭРД станут эффективными.

* * *
Огнепоклонники pic17.png
Первый отечественный жидкостный ракетный двигатель ОРМ-1

Первый из ЖРД, называвшихся в ту пору «опытными ракетными моторами» (ОРМ), был создан в 1930–1931 гг. и работал на унитарном топливе — растворах толуола или бензина в азотном тетроксиде. Это был чисто экспериментальный двигатель, на котором отрабатывались безопасность работы, термозащита камеры сгорания и сопла, зажигание топлива, измерение тяги и др. (Последняя достигла 6 кГ.) Этот двигатель можно считать прародителем всех ЖРД, используемых ныне.

Вслед за ОРМ был построен ОРМ-1, при создании которого был учтен опыт работы с первым двигателем. ОРМ-1 предназначался для кратковременной работы на жидких топливах. При использовании смеси бензина с жидким кислородом двигатель развивал тягу уже в 20 кГ. Внутренняя поверхность камеры сгорания и сопл планкировалась красной медью, а медные поверхности шести струйных форсунок были позолочены для усиления коррозийной стойкости. Двигатель охлаждала водяная рубашка. Компоненты топлива подавались сжатым азотом, а зажигание осуществлялось с помощью бикфордова шнура.

В 1933 г. прошел стендовые сдаточные испытания уже ОРМ-50.Он работал на азотнокислотнокеросиновом топливе и обеспечивал многократный пуск. Охлаждение было не статическим, как у ОРМ-1, а динамическим — компонентами топлива и с оребрением сопла. Зажигание — химическое. В том же году успешно прошел сдаточные испытания и ОРМ-52, предназначенный для морских торпед. Его тяга достигала 300 кГ.

Огнепоклонники pic18.png
Двигатель ОРМ-65

Лучшим отечественным ЖРД той поры был ОРМ-65 с регулируемой в полете — от 50 до 175 кГ — тягой. Он предназначался для ракетоплана РП-318 и крылатой ракеты 212 конструкции С. П. Королева. Но мне не довелось быть свидетелем его испытаний, проводившихся уже в 1936 г. Подача топлива в новых ОРМ осуществлялась не сжатым азотом, а чистым нейтральным газом, вырабатываемым специально разработанным Глушко газогенератором.

Естественным развитием ОРМ явилось семейство авиационных ракетных двигателей, работавших преимущественно на смесях керосина и азотной кислоты. Они нашли практическое применение в ходе Великой Отечественной войны на самолетах Пе-2, Ла-7р и -120р, Як-3 и Су-6, -7.

Огнепоклонники pic19.png
Ракетоплан РП-318 с двигателем ОРМ/65
Огнепоклонники pic20.png
Крылатая ракета КР-212 на пусковой установке
Огнепоклонники pic21.png
Двигатель РД-107 первой ступени ракеты «Восток»

В пору триумфа советской ракетной техники С. П. Королев сказал: «Как радостно вспомнить сейчас эти маленькие ОРМ'ы, так прочно заложившие основы советского ракетного двигателестроения». Именно из них выросли созданные в 1954–1957 гг. ОКБ-ГДЛ такие мощные ЖРД на кислородно-керосиновом топливе, как РД-107 и РД-108 — для первой и второй ступени ракеты «Восток», вынесшей весной 1961 г. первого землянина в космическое пространство. Их тяга превышала уже сотни тонн. Однако мы опять забежали вперед…

Работы над ЖРД велись во 2-м отделе ГДЛ, возглавляемом Глушко. Всего в структуре ГДЛ действовало пять отделов. Первый, размещавшийся в здании Главного адмиралтейства и руководимый Г. Э. Лангемаком (о котором речь пойдет далее), занимался разработкой реактивных снарядов — «эрэсов». К 1933 г. была завершена доводка целого семейства снарядов, и девять типов приняли на вооружение. В частности, снаряды калибра 82 мм предназначались для установки на самолетах, 132 мм и более (до 410) — для наземных пусковых установок. Как указывалось, 132-миллиметровые снаряды предназначались для гвардейских минометов «Катюша». В связи с появляющимися в печати сообщениями о лжеавторах этих боеприпасов требуется внести в этот вопрос ясность и сообщить имена действительных авторов: Н. И. Тихомиров, В. А. Артемьев, Б. С. Петропавловский, Г. Э. Лангемак и И. Т. Клейменов. Возможно, что к этому перечню добавляют имена лиц, которые работали на заводах, занятых массовым производством указанного вооружения. Такое в истории техники случалось и ранее. Но фальсификация никому не делает чести.


Перейти на страницу:
Изменить размер шрифта: