Это не смутило Гоббса, и он ответил памфлетом «Заметки об абсурдных исследованиях в геометрии, просторечии, варварстве и неотесанной церковной политике Джона Валлиса и компании». Иными словами, научный диспут стал превращаться в пререкания по разным поводам, даже таким, как незначительные грамматические аспекты, причем оба ученых мужа считали необходимым продемонстрировать всю свою эрудицию. В этой связи Валлис ответил на латыни еще одной игрой слов: Hobbiani Puncti Dispunktio (Гоббсова неточечная точка»).
Гоббс прекратил перепалку в 1657 году, так как хотел закончить задуманную трилогию. Валлис тоже нашел своему времени более достойное применение и занялся написанием обстоятельного трактата на тему, которую сейчас мы назвали бы изобретением исчисления бесконечно малых величин. Этот труд был издан в том же году и назывался небезосновательно Mathesis Universalis («Общая математика»).
Какое-то время было затишье. Но в 1660 году Гоббс опять вернулся на ринг. Он подверг детальной критике труды Валлиса, написав пять диалогов между двумя собеседниками А и Б. В ответ на это Валлис заявил, что А и Б — это Томас и Гоббс, и их диалог не что иное, как дискуссия, в которой «Томас хвалит Гоббса, а Гоббс хвалит Томаса, и они оба хвалят Томаса Гоббса как третье лицо, не рискуя при этом быть обвиненными в самовосхвалении»{52}.
Гоббс дал ответ на это в 1666 году. Он стремился уязвить достоинство всех профессоров геометрии. С этой целью он заявил, что ему, по-видимому, придется сражаться «практически со всеми геометрами», и придумал фразу: «Либо я один сошел с ума, либо я один не сошел с ума, третьего не дано, разве что кто-либо докажет, что мы все сошли с ума»{53}.
В это время Лондонское Королевское общество начало издавать серию «Философские труды», которая, кстати, издается по сей день. Валлис воспользовался представившейся возможностью и в августе 1666 года опубликовал «Критику последнего труда мистера Гоббса De Principiis et Ratiocinatione Geometrarum», в которой развивает затронутую Гоббсом тему о безумии. Он утверждает, что вряд ли имеет смысл опровергать сказанное в книге Гоббса, так как если то, что сказал о себе Гоббс, правда, то тогда «опровержение будет либо бесполезно, либо бессмысленно. […] Потому что если это он безумен, то нет надежды, что его можно будет убедить разумными доводами, а если это мы безумны, то мы не в состоянии даже пытаться убедить его»{54}. Позже, комментируя заявление Гоббса, он писал: «Но почему изогнутость дуги должна называться углом обхвата? Я не нахожу другого объяснения, кроме того, что мистер Гоббс предпочитает называть гвоздем то, что другие именуют панихидой»{55}.
В 1669 году Гоббс, которому было уже за 80 и который, очевидно, был уже не в состоянии оценивать свои реальные возможности, опубликовал все свои работы по решению задачи о квадратуре круга и еще двух других не менее известных геометрических задач древнегреческого мира — о кубатуре сферы и геометрическом удвоении куба. И снова, как только эти работы были изданы, Валлис с неослабевающим упорством раскритиковал их в пух и прах. И снова завязалась письменная перепалка. Она продолжалась до 1672 года. После очередного хода Валлиса Гоббс не ответил. В 1678 году в возрасте 90 лет он закончил свой новый труд Decameron Physiologicum, состоящий из десяти диалогов на физические темы. И все-таки он не смог удержаться, чтобы не нанести ответный удар Валлису. На сей раз его внимания удостоилась статья о гравитации, которая вошла в книгу Валлиса De Motu (1669).
Через год Гоббс умер. Родившись в эпоху расцвета схоластики, он способствовал созданию механистической концепции природы. Его наука была дедуктивной. И когда члены Лондонского Королевского общества оставили эту науку позади и сделали шаг навстречу новой экспериментальной, индуктивной науке, Гоббс не смог перестроиться. Так с его смертью закончилось великое научное противостояние, продолжавшееся почти четверть века. Валлис умер в 1703 году, будучи на протяжении 53 лет профессором кафедры геометрии в Оксфорде.
Интересно было бы сравнить это противостояние с научными спорами Лейбница с Ньютоном и Вольтера с Нидхемом, которые описаны в последующих двух главах. Во всех трех случаях один из участников научного спора был выдающимся философом и универсалом, а другой — узкопрофильным специалистом. Подобные конфликты в наше время случаются значительно реже в силу того, что науки, в том числе математические, стали настолько сложными, что без специального образования не многие дерзнут бросить вызов специалистам.
Вы увидите, что закончились эти противостояния по-разному. Но в случае с Гоббсом и Валлисом результат печатной перепалки был слишком очевидным для всех, кто разбирался в математике. Несмотря на бесстрашие и упорство Грббса, он всегда проигрывал Валлису во всем, что касалось математики, но никогда не признавал этого.
Промахи Гоббса в математике не нанесли ущерба его репутации в других областях науки. Опубликование «Левиафана» в европейских государствах принесло ему славу, которой он так жаждал, и дало ему круг почитателей, с которыми он вел переписку все оставшиеся годы своей долгой жизни. Гоббс также получил два очень сердечных отзыва от Лейбница в начале 1670-х годов. В одном из них Лейбниц искренне назвал Гоббса первым философом, который «использовал правильный метод аргументации в политической философии»{56}.
Гоббс был бы счастлив узнать, что его идеи оказали сильное влияние на мышление многих выдающихся ученых, таких как Спиноза, Лейбниц, Дидро, Руссо, Юм и Локк. После Второй мировой войны снова живо заинтересовались работами Гоббса, так как они, казалось, могли помочь справиться со все возрастающими трудностями нашей жизни в век необыкновенного могущества военных технологий.
Нужно признать, что потомки обошлись с Гоббсом гораздо снисходительнее, чем его современники. Его иногда называют первым политическим философом. Майкл Оукшотт, теоретик Гоббса, назвал «Левиафан» «величайшим и, возможно, единственным трудом по политической философии на английском языке»{57}. За работы о поведении человека в обществе в некоторых кругах его считают отцом социологии.
По иронии, именно на первых страницах «Левиафана» он замечает, что «в арифметике и начинающие математики, и профессора могут допустить ошибку и выполнить неправильные вычисления». Там же, но чуть дальше он пишет: «Зато в геометрии кто может быть настолько глуп, чтобы ошибиться и все равно настаивать на своей правоте, когда другие указывают ему на его ошибку?»{58} Он никогда не мог трезво оценить свои возможности в математике.
В 1882 году немецкий математик Фердинанд Линдеман установил неразрешимость проблемы квадратуры круга, которая не давала покоя Гоббсу и Валлису. Значит, все усилия были напрасны? Минтц сказал, что все дискуссии на эту тему были «пустыми»{59}, а Мартин Гарднер в статье в Scientific American все попытки решить эту задачу назвал «бесполезными»{60}.
На самом деле все это было не так бесполезно, как кажется. Из века в век повторяющиеся ошибки геометров, таких как Гоббс, заставляли математиков, таких как Валлис, пытаться каким-то иным образом решить эту задачу — с помощью чисел и алгебры, что в итоге привело к следующему этапу в математике — возникновению исчисления бесконечно малых величин.