Допустим, что Протосолнце обладало сильным магнитным полем, а вещество протопланетного облака хотя бы частично содержало ионизированный газ. В таком случае в этом газе возникает собственное магнитное поле, взаимодействующее с магнитным полем Протосолнца. В результате между диском и центральным сгущением (будущим Солнцем) устанавливается сильное магнитное «сцепление», вследствие которого вещество диска удаляется от центра, распространяясь на всю Солнечную систему, а Протосолнце, теряя момент количества движения, продолжает сжиматься дальше и в конце концов превращается в современное, медленно вращающееся Солнце.

Значит, по Ф. Хойлу, магнитное торможение вращающегося Протосолнца окружающей его туманностью приведет к переходу момента количества движения от Протосолнца к облаку, а следовательно, и к сгустившимся из него планетам. Эта остроумная схема, объясняющая распределение момента количества движения между Солнцем и планетами, сама, однако, нуждается в дальнейшем обосновании.

Расчеты показывают, что у горячих звезд атмосфера охвачена интенсивной конвекцией и при этом магнитное поле располагается почти целиком внутри звезды. Значит, если Протосолнце было горячим, то «намагнитить» протопланетное облако оно не могло. В противном случае протопланетное облако «раскручивается» магнитным полем звезды столь быстро, что протопланетный диск просто не успевает сформироваться и принять на себя существенную долю момента количества движения. Эти и другие недостатки гипотезы Ф. Хойла заставили исследователей искать иные схемы эволюции протопланетного облака.

Из гипотез, выдвинутых в последнее время, наиболее правдоподобной считается гипотеза Э. Шацмана.[7] Она наиболее близка к старой гипотезе Лапласа, хотя в отличие от последнего Э. Шацман использует в своей гипотезе не только механические, но и электромагнитные силы.

По мнению Э. Шацмана, протопланетная туманность с самого начала находилась в состоянии конвективно-турбулентного перемешивания. Она сжималась относительно медленно и истечение вещества с экватора вращающейся туманности в протопланетный диск происходило постепенно, начиная с расстояний, соответствующих орбите Плутона, до современной орбиты Меркурия. Центральное сгущение туманности (Протосолнце) на последней стадии сжатия обладало высокой активностью. Оно выбрасывало в пространство множество заряженных частиц, которые перемещались вдоль силовых линий магнитного поля Протосолнца и двигались с его угловой скоростью до больших расстояний, тем самым замедляя его вращение. Благодаря этому «магнитному» торможению в конце концов Протосолнце передало момент количества движения протопланетному облаку, а через него планетам. Заметим, что в гипотезе Э. Шацмана масса протопланетного диска лишь на 10 % превышала современную массу Солнца, что, по мнению В.С. Сафронова, облегчает дальнейшее теоретическое обоснование этой гипотезы.

Трудности, возникшие при объяснении происхождения и эволюции протопланетного облака, заставляют некоторых исследователей искать решение проблемы образования планет в другом направлении.

Может быть, формирование планетной системы шло подобно образованию галактик и звезд по В.А. Амбарцумяну, т. е. из каких-то сверхплотных тел? Не возникли ли Земля и планеты в результате каких-то катастрофических взрывов, вызванных распадом дозвездного вещества? Подобные идеи защищал известный советский исследователь комет С.К. Всехсвятский. «Имеется много оснований считать первичные планеты (протопланеты), — пишет он, — телами звездной природы… Солнце могло быть компонентом двойной системы, сохранившимся после того, как второй компонент разделился на более мелкие части в результате взрыва…»[8].

Действительно, планеты-гиганты и Солнце близки по химическому составу. У планет земного типа легкие элементы могли улетучиться в процессе эволюции. Известны звезды в двойных системах, по массе близкие к крупным планетам. Значит, гипотетический спутник Протосолнца по массе мог быть близок к суммарной массе всех планет. Взрыв этого спутника (и здесь гипотеза С.К. Всехсвятского смыкается с идеями В.А. Амбарцумяна), вероятно, произошел за счет взрывообразного превращения находившегося внутри него дозвездного вещества. «Осколки» спутника были малы и потому они быстро охладились, в результате чего возникли сложные молекулярные соединения и твердые оболочки будущих планет. «Дальнейший процесс, — пишет С.К. Всехсвятский, — должен был иметь характер отдельных подъемов активности, когда накапливающиеся под корой газы прорывали ее. С течением времени оболочка метаморфизировалась, усложнялась, что приводило ко все более длительным промежуткам активности и, следовательно, накапливанию большей энергии разрушений…»[9].

И сегодня, как показал С.К. Всехсвятский во многих своих работах, в Солнечной системе наблюдаются эруптивные, взрывные процессы — по его мнению, проявление остатков «звездной» энергии у ныне затвердевших планетных тел. Конечно, схема образования Земли, предложенная С.К. Всехсвятским, лишь первая и пока что мало чем обоснованная попытка связать идеи В.А. Амбарцумяна об эволюции звезд и галактик с современной планетной космогонией. Следует подчеркнуть, что гипотеза О.Ю. Шмидта ценна, в частности, тем, что она лучше, чем любые другие гипотезы, согласуется с фактами.

По одному из вариантов эволюции Солнечной системы, рассчитанному учеником О.Ю. Шмидта В.С. Сафроновым, в протопланетном облаке уже в первичную эпоху его существования произошло разделение пыли и газа, причем пыль постепенно оседала к центральной плоскости планетной системы. Одновременно росли размеры пылинок примерно до 1 см в поперечнике. Следовательно, в экваториальной плоскости Солнца скопился плотный слой пыли. При достаточно высокой «критической» плотности этот слой распался на кольца, из колец возникли сгущения" — планетезимали. На расстоянии земной орбиты их поперечники в среднем достигали нескольких десятков километров, в зоне будущих планет-гигантов они были гораздо больше (сотни тысяч километров в диаметре).

Планетезимали уплотнялись, крупные из них росли за счет мелких и в конце концов за десятки тысяч лет превратились в твердые тела. Рост планет до современных размеров продолжался гораздо дольше (для Земли около 100 млн. лет). Возможно, что из зоны планет-гигантов много твердого вещества было выброшено на периферию Солнечной системы. Другие планетезимали еще очень долго падали на поверхности формирующихся планет. Их падение на Землю приводило постепенно к разогреву земных недр.

Все же многое в рождении Земли остается пока неясным. Но как бы ни возникла Земля, роль Солнца в ее рождении и дальнейшей эволюции была огромной. Его поле тяготения (и магнитное поле), его различные излучения определяют всю историю Земли.

Путешествие по недрам планет i_015.jpg
 Первые шаги нашей планеты

Первозданная Земля мало походила на современную. Однако на протяжении всей долгой истории нашей планеты тяжелые химические элементы были и остаются ее основой. Эта черта резко отличает Землю (и другие планеты) от остального космоса. Там безраздельно господствуют водород и гелий. Мы живем в водородно-гелиевом мире с незначительной примесью более тяжелых элементов. Но в эту «примесь» входят все планетные системы и их обитатели, а потому для нас она — отнюдь не второстепенная деталь Вселенной.

Откуда взялся материал, из которого созидаются планеты и жизнь? Каково происхождение химических элементов? Первичный синтез тяжелых элементов происходил на самых ранних стадиях эволюции Вселенной. Но и сейчас в космосе идут созидательные процессы, вещество усложняется, и похоже на то, что это «усложнение» только начинается.

Синтез тяжелых элементов прежде всего совершается в недрах звезд и Солнца при давлении 10 млн. МПа и сжатии вещества в его недрах до плотности 100 г/см3, которые и нагрели Солнце до температуры 14 млн. градусов — такова обстановка в Центральных областях Солнца. Здесь, в беспорядочной толчее протонов и других частиц, казалось бы, все хаотично. На самом деле в центральных областях Солнца идет односторонний направленный процесс — из протонов в ходе так называемого протон-протонного термоядерного цикла созидаются альфа-частицы — ядра атомов гелия.

вернуться

7

Подробнее см. Происхождение Солнечной системы/Под ред. Г. Ривса. Пер. с англ. и франц./Под ред. Г.А. Лейкина и В.С. Сафронова. — М.: Мир, 1976.

вернуться

8

Проблемы современной космогонии/Под ред. В.А. Амбарцумяна. — М.: Наука, 1972, стр. 378–379.

вернуться

9

Проблемы современной космогонии…


Перейти на страницу:
Изменить размер шрифта: