Это еще одна дедукция, очень сокращенная и простая.
НЕПОЛНАЯ ИНДУКЦИЯ
Индуктивное умозаключение, результатом которого является общий вывод обо всем классе предметов на основании знания лишь некоторых предметов данного класса, принято называть неполной или популярной индукцией.
Например, из того, что инертные газы гелий, неон и аргон имеют валентность, равную нулю, можно сделать общий вывод, что все инертные газы имеют эту же валентность. Это — неполная индукция, поскольку знание о трех инертных газах распространяется на все такие газы, включая не рассматривавшиеся специально криптон и ксенон.
Иногда перечисление является достаточно обширным, и тем не менее опирающееся на него обобщение оказывается ошибочным.
«Алюминий — твердое тело; железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец — также твердые тела; следовательно, все металлы — твердые тела». Но этот вывод ложен, поскольку ртуть — единственный из всех металлов — жидкость.
Много интересных примеров, поспешных обобщений, встречавшихся в истории науки, приводит в своих работах русский ученый В. И. Вернадский.
До XVII в., покав науку не вошло окончательно понятие «сила», некоторые формы предметов и по аналогии некоторые формы путей, описываемых предметами, считались, по существу, способными производить бесконечное движение. В самом деле, представим себе форму идеально правильного шара, положим этот шар на плоскость; теоретически он не может удержаться неподвижно и все время будет в движении. Это считалось следствием идеально круглой формы шара. Ибо чем ближе форма фигуры к шаровой, тем точнее будет выражение, что такой материальный шар любых размеров будет держаться на идеальной зеркальной плоскости на одном атоме, то есть будет больше способен к движению, менее устойчив. Идеально круглая форма, полагали тогда, по своей сущности способна поддерживать раз сообщенное движение.
Этим путем объяснялось чрезвычайно быстрое вращение небесных сфер, эпициклов. Эти движения были единожды сообщены им божеством и затем продолжались века как свойство идеально шаровой формы». Оценивая такого рода рассуждения, Вернадский пишет: «Как далеки эти научные воззрения от современных, а между тем, по существу, это строго индуктивные построения, основанные на научном наблюдении. И даже в настоящее время в среде ученых исследователей видим попытки возрождения, по существу, аналогичных воззрений».
Поспешное обобщение, т. е. обобщение без достаточных на то оснований, — обычная ошибка в индуктивных рассуждениях.
Индуктивные обобщения требуют определенной осмотрительности и осторожности. Многое здесь зависит от числа изученных случаев. Чем обширнее база индукции, тем более правдоподобным является индуктивное заключение. Важное значение имеет также разнообразие, разнотипность этих случаев.
Но наиболее существенным является анализ характера связей предметов и их признаков, доказательство неслучайности наблюдаемой регулярности, ее укорененности в сущности исследуемых объектов. Выявление причин, порождающих эту регулярность, позволяет дополнить чистую индукцию фрагментами дедуктивного рассуждения и тем самым усилить и укрепить ее.
Общие утверждения, и в частности научные законы, полученные индуктивным способом, не являются еще полноправными истинами. Им предстоит пройти длинный и сложный путь, пока из вероятностных предположений они превратятся в составные элементы научного знания. Некоторые детали этого пути рассматриваются далее.
Наряду с неполной индукцией принято выделять в качестве особого вида индуктивного рассуждения полную индукцию. В ее посылках о каждом из предметов, входящих в рассматриваемое множество, утверждается, что он имеет определенное свойство. В заключении говорится, что все предметы данного множества обладают этим свойством.
К примеру, учитель, читая список учеников какого-то класса, убеждается, что каждый названный им присутствует. На этом основании учитель делает вывод, что присутствуют все ученики.
В полной индукции заключение необходимо, а не с некоторой вероятностью вытекает из посылок. Эта индукция является, таким образом, разновидностью дедуктивного умозаключения.
К дедукции относится и так называемая математическая индукция, широко используемая в математике.
ПОЗНАНИЕ КАК ТВОРЧЕСТВО
Ф. Бэкон, положивший начало систематическому изучению индукции, весьма скептически относился к популярной индукции, опирающейся на простое перечисление подтверждающих примеров. Он писал: «Индукция, которая совершается путем простого перечисления, есть детская вещь, она дает шаткие заключения и подвергнута опасности со стороны противоречащих частностей, вынося решение большей частью на основании меньшего, чем следует, количества фактов, и притом только тех, которые имеются налицо».
Этой «детской вещи» Бэкон противопоставлял описанные им особые индуктивные принципы установления причинных связей. Он даже полагал, что предлагаемый им индуктивный путь открытия знаний, являющийся очень простой, чуть ли не механической процедурой, «почти уравнивает дарования и мало что оставляет их превосходству...». Продолжая его мысль, можно сказать, что он надеялся едва ли не на создание особой «индуктивной машины». Вводя в такого рода вычислительную машину все предложения, относящиеся к наблюдениям, мы получали бы на выходе точную систему законов, объясняющих эти наблюдения.
Программа Бэкона была, разумеется, чистой утопией. Никакая «индуктивная машина», перерабатывающая факты в новые законы и теории, невозможна. Индукция, ведущая от частных утверждений к общим, дает только вероятное, а не достоверное знание.
Все это еще раз подтверждает простую в своей основе мысль: познание реального мира — всегда творчество. Стандартные правила, принципы и приемы, какими бы совершенными они ни были, не дают гарантии достоверности нового знания. Самое строгое следование им не предохраняет от ошибок и заблуждений.
Всякое открытие требует таланта и творчества. И даже само применение разнообразных приемов, в какой-то мере облегчающих путь к открытию, является творческим процессом.
СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ
Вот два примера дедуктивных выводов из рассказа русского юмориста начала века В. Билибина.
«Если бы на свете не существовало солнца, то пришлось бы постоянно жечь свечи и керосин.
Если бы пришлось постоянно жечь свечи и керосин, то чиновникам не хватало бы их жалованья и они брали бы взятки.
Следовательно, чиновники не берут взяток потому, что на свете существует солнце».
«Если бы быки и куры ходили зажаренными, то не нужно было бы разводить печи и, значит, было бы меньше пожаров.
Если бы было меньше пожаров, страховые общества не повысили бы так жестоко страховую премию.
Следовательно, страховые общества повысили так жестоко страховую премию потому, что быки и куры не ходят зажаренными».
Эти рассуждения пародировали обычные когда-то наивные объяснения того, почему чиновники берут взятки, а страховые компании завышают страховой процент.
Понятно, что оба эти рассуждения логически несостоятельны. Их заключения не вытекают из принятых посылок. Поэтому если бы даже посылки являлись истинными, это не означало бы, что и заключения верны.
Основной задачей логики является отделение правильных способов рассуждения (вывода, умозаключения) от неправильных. Правильные выводы называются также обоснованными или логичными.
Своеобразие формальной логики в подходе к анализу правильности рассуждения связано с ее основным принципом, в соответствии с которым правильность рассуждения зависит только от его формы, или схемы. Самым общим образом форму рассуждения можно определить как способ связи входящих в него содержательных частей.