Для всех ядер атомов дефект массы определен специальными приборами — масс-спектрографами. Следовательно, для всех ядер определена и энергия связи. Подсчитаем для примера энергию связи ядра гелия. Масса ядра атома гелия, определенная масс-спектрографическим методом, равна 4,003 атомных единиц массы (аем = 1,66×10-24 г). Сумма же масс двух протонов и двух нейтронов, входящих в ядро атома гелия, равна 4,033 аем. Значит, при образовании ядра гелия дефект (убыль) массы равен 0,03 аем.

На основании закона взаимосвязи массы и энергии энергия связи ядра атома гелия равна:

Е = Δm×с2 = 0,03×1,66×10-24×(3×1010)2 = 45×10-6 эрг;

здесь Δm — масса в граммах; с — скорость света в см/сек.

В ядерной физике обычно энергию связи выражают в специальных единицах — миллионах электронвольт (Мэв = 1,6×10-6 эрг). Это значит, что энергия связи ядра атома гелия равна 28 Мэв. Таким же образом можно вычислить энергию связи и других ядер атомов. Например, для ядра урана-235 энергия связи равна 1783 Мэв.

Очень важна величина энергии связи, приходящаяся на одну ядерную частицу — нуклон, E/A, где A — массовое число.

Как видно, энергия связи на нуклон равна величине общей энергии связи ядра Е, деленной на общее число нуклонов в ядре (массовое число А). Для дейтерия E/A равна 1,09 Мэв, трития — 2,77 Мэв, гелия — 7 Мэв, железа — 8,7 Мэв, урана — 7,6 Мэв и т. д.

Физика в бою _01.jpg
Рис. 1. Зависимость энергии связи, приходящейся на один нуклон

Для химических элементов энергия связи, приходящаяся на один нуклон, приведена на рис. 1. Здесь по горизонтальной оси отложено массовое число элементов А, по вертикальной — энергия связи ядра, приходящаяся на один нуклон E/A, в мегаэлектронвольтах (Мэв). Кривая имеет важное значение для ядерной физики. Она характеризует устойчивость (прочность) атомных ядер, то есть показывает, какую энергию нужно потратить для того, чтобы оторвать один нуклон от ядра.

С другой стороны, кривая показывает, какое количество энергии выделяется на один нуклон при образовании ядра. Легко увидеть, что наибольшей прочностью обладают ядра атомов химических элементов с массовыми числами А, лежащими в пределах от 40 до 100, другими словами, элементов средней части периодической системы Д. И. Менделеева. Ядра атомов химических элементов, расположенных в начале и конце периодической системы, имеют меньшую прочность.

Это-то обстоятельство и дало возможность открыть способы получения ядерной энергии, создать ядерное оружие. Ведь если осуществить ядерную реакцию, в которой будут образовываться ядра большей прочности, чем исходные, то реакция будет сопровождаться выделением энергии. Обратная реакция потребовала бы затраты энергии. Поэтому кривая графика указывает в принципе на два способа высвобождения ядерной энергии: первый — деление ядер тяжелых элементов, расположенных в конце периодической системы Д. И. Менделеева, на более легкие ядра; второй — соединение (синтез) ядер легких элементов (например, водорода) в более тяжелые ядра (например, гелия).

Рассчитаем, какое количество энергии выделится при делении ядер одного килограмма урана-235. При делении одного ядра урана-235 на два приблизительно равных ядра атомный вес каждого из них составит примерно 235/2 = 117, хотя наиболее вероятно получение одного тяжелого ядра с атомным весом 140, а другого легкого — с атомным весом 95.

Так как энергия связи на каждый нуклон этих легких ядер равна примерно 8,5 Мэв, то полная энергия связи одного легкого ядра будет 117×8,5 = 994 Мэв. Полная же энергия связи ядра урана-235, состоящего из 235 нуклонов, равна 235×7,6 = 1786 Мэв. Согласно сказанному выше при делении ядра урана на два легких ядра высвободится энергия, равная 994×2—1786 = 202 Мэв.

В 1 тыс. г урана содержится (6,02×1023×1000)/235 = 2,56×1024 атомов. При расщеплении всех их ядер высвободится энергия, равная 2,56×1024×202 = = 520×1024 Мэв = 2×1013 калорий = 2×1010 больших калорий (1 Мэв = 3,8×10-14 калорий).

Для наглядного представления подсчитаем, сколько, например, нужно взорвать тротила, чтобы получить такое же количество энергии. Как уже отмечалось, при взрыве 1 кг тротила выделяется около тысячи больших калорий. Следовательно, при делении ядер 1 кг урана-235 выделяется такое же количество энергии, как и при взрыве 20 тысяч тонн тротила. Вот почему мощность ядерного оружия выражают обычно в тротиловых эквивалентах.

Реакция деления тяжелых ядер урана-235 и плутония-239 используется в ядерном оружии и ядерных силовых установках.

Иное дело — высвобождение внутриядерной энергии при соединении ядер изотопов водорода в ядра гелия. Практическое применение в этом случае нашла реакция соединения ядер тяжелого водорода (дейтерия) и сверхтяжелого водорода (трития).

Подсчитаем количество энергии, которое выделяется при образовании 1 кг гелия из ядер этих изотопов водорода. Полная энергия связи ядра дейтерия, состоящего из двух нуклонов, равна 2×1,09 = 2,18 Мэв, а ядра трития, состоящего из трех нуклонов, равна 3×2,78 = 8,34 Мэв. Полная же энергия связи ядра гелия, как уже отмечалось, равна 28 Мэв. Следовательно, при образовании одного ядра гелия из ядер дейтерия и трития высвободится ядерная энергия, равная 28 — (2,18 + 8,34) = 17,48 Мэв. В 1 тыс. г гелия содержится (6,02×1023×1000)/4 = 1,5×1026 атомов. Поэтому при образовании 1 кг гелия из ядер дейтерия и трития выделится такое количество ядерной энергии: 1,5×1026×17,48 = 26,2×1026 Мэв = 1,0×1014 калорий = 1,0×1013 больших калорий. Такое же количество энергии выделяется при взрыве 100 тыс. т тротила.

Если сравнить результаты расчетов, показывающих выделение внутриядерной энергии при делении и синтезе ядер, то окажется, что при синтезе изотопов водорода в ядрах гелия энергии выделяется в 5 раз больше, чем при делении ядер урана-235 или плутония-239. На рис. 1 это условно отмечено размером радиоактивного облака.

Реакция соединения ядер изотопов водорода используется, как известно, в термоядерном оружии.

Следует заметить, что закон взаимосвязи массы и энергии сыграл решающую роль в открытии ядерной энергии и создании ядерного и термоядерного оружия. Он открывает возможности создания еще более мощного источника энергии на основе аннигиляции античастиц— превращения элементарных частиц в фотоны энергии. Аннигиляционное излучение было открыто при взаимодействии электрона с позитроном. Электрон, соударяясь с позитроном, превращается в два фотона (кванта) с энергией по 0,51 Мэв каждый.

Аннигиляционное излучение возможно и при соударении других частиц, например, протона и антипротона. При соударении протона и антипротона образуется два кванта с энергией по 940 Мэв каждый. Может быть также получено аннигиляционное излучение и при соударении нейтрона и антинейтрона.

Особенность аннигиляции частиц состоит в том, что частицы «без остатка» переходят в фотоны, в то время как при делении ядер урана-235 и синтезе изотопов водорода дефект массы составляет менее одного процента.

На основании закона взаимосвязи массы и энергии можно вычислить количество энергии, выделяемое при аннигиляции любого количества массы вещества. Подсчитаем для примера, какая энергия связана с веществом, обладающим массой в один грамм:

Е = m×с2 = 1×(3×1010)2 = 9×1020 эрг = 21×1012 калорий = 21×109 больших калорий.

Как видно, в 1 грамме массы скрыта энергия, эквивалентная взрыву примерно 20 тыс. т тротила. Не вызывает сомнения, что наука в будущем научится добывать энергию и на основе аннигиляции частиц. Уверенность в этом дают огромные успехи современной ядерной физики, решившей уже не одну сложную задачу.


Перейти на страницу:
Изменить размер шрифта: