Но вот в самом протоне уже все смешалось. Энергия связи его частей настолько велика, что внутри образуемого ими целого они теряют индивидуальность. Утверждение о том, что частица состоит из других частиц, теперь приобретает уже весьма условный характер. Идея чисто механической делимости вещества больше не применима.

Нуклон еще как-то можно представить себе наглядно, но чтобы представить себе мезон, надо вообразить что-то вроде трех проникающих друг в друга пульсирующих пузырей с уплотнениями в центрах. К этому надо добавить еще несколько тяжелых бусинок, изображающих нуклоны и антинуклоны внутри пузырей. Даже не бусинок, а тоже пузырей с размерами, как у самого мезона. Полная путаница и каша! Но ничего не поделаешь: объекты микромира с их противоречивой сущностью нельзя изобразить одной картинкой: они чересчур сложны для этого. Физики представляют себе их с помощью моделей. Это как бы проекции под разными углами. Каждая из них выделяет одно или несколько свойств частицы, оставляя другие в стороне. Иначе ничего не получается.

Наглядное представление о мезоне и нуклоне — это набор многих отдельных картинок, которые отчасти даже противоречат друг другу. Ну а насколько согласованной и полной получается при этом общая картина, это уже зависит от знаний, опыта, воображения и таланта того, кто создает картину. Как бы то ни было, ясно, что современную физику нельзя просто выучить, к ней надо еще и привыкнуть.

Итак, поскольку все частицы взаимодействуют между собой, каждая из них образует вокруг себя облако, состоящее из частиц всех сортов, легких — на периферии, тяжелых — в глубине. Можно сказать, что элементарная частица состоит сразу из всех элементарных частиц, в том числе и из подобных себе. Своеобразная «ядерная демократия»! Иногда это называют еще принципом шнуровки: всякая частица распадается на несколько других, те распадаются, в свою очередь, и так далее. Получается единая крепко сплетенная сеть, где нет ни начала, ни конца и все частицы одновременно являются и элементарными и сложными.

На современных ускорителях — этих локаторах микромира — удается прощупать лишь внешние, периферические слои частиц. О том, что находится глубже, можно лишь строить догадки. Подобно тому как близорукий человек не замечает без очков мелких подробностей, так и нынешний ускоритель не способен разглядеть, что творится глубоко в недрах частицы. Для этого нужны машины со значительно большей энергией.

Но почему же тогда протон, мезон и другие частицы называют элементарными? Ведь они устроены так сложно. Неужели в мире нет ничего более простого, действительно элементарного.

Характерная особенность частиц, которые относят к разряду элементарных, состоит в том, что в любых известных сегодня реакциях эти частицы лишь переходят друг в друга — взаимопревращаются. Как в волшебной сказке, где заколдованный лев вдруг превращается в маленького мышонка, тот — в кошку, а кошка еще в кого-нибудь. Сталкиваясь, частицы, подобно льву или мышонку, изменяют свою форму, и никаких более простых «кусков» от них не отцепляется. В то же время из них, как из кирпичиков, можно построить весь окружающий мир.

Частицы называют элементарными по традиции, но физики отдают себе отчет в том, что каждый такой «элемент» — сложная материальная система.

И все же недавно физики нащупали еще один этаж в строении вещества — нашли частицы, которые по сравнению со всеми открытыми раньше можно считать сверхэлементарными. Это кварки и антикварки — микрообъекты, которые находятся внутри элементарных частиц и которые пока никак не удается выделить в свободном виде. Тем не менее в их существовании уверены сегодня все физики.

Полагают, что кварк и антикварк имеют по нескольку состояний (вспомним аналогию с многогранником, разные стороны которого обладают различными свойствами). Сложение трех кварков в различных состояниях дает нуклон и гипероны — тяжелые, чем-то напоминающие нуклон частицы с очень коротким временем жизни. Сложение кварка и антикварка дает мезоны различных типов. В общем, из кварков и антикварков, как из блоков, можно «составить» нуклоны, мезоны и все остальные частицы.

Как самостоятельные частицы кварки и антикварки существуют где-то глубоко внутри элементарных частиц. На их периферии кварки могут находиться лишь в форме связанных сгустков, например в виде пи-мезонов. И вот что удивительно: «кварковый конструктор», или, как говорят физики, «кварковый счет», объясняет большое число экспериментальных фактов, с его помощью открыты новые типы элементарных частиц, и в то же время все попытки обнаружить свободные кварки в эксперименте терпят неудачу.

И еще более удивительный факт. Хотя кварка никто никогда не видел, тем не менее есть способ его «пощупать» и при этом не только определить заряд, магнитный момент и другие характеристики этой таинственной частицы, но даже оценить ее размеры. Кварк еще не открыт, но ощутить его уже можно!

Скептик может сказать, что рассуждать о свойствах частицы, которую никто не видел,— это все равно, что делить шкуру неубитого медведя. Но не будем торопиться. Вспомним про электрон, размеры которого очень малы, благодаря ему с его помощью можно исследовать самые мелкие детали глубоко внутри протона. Если бы протон представлял собой единую, монолитную систему, то вели-чина импульса столкнувшегося с ним и отскочившего в обратном направлении электрона давала бы нам сведения о скорости протона как целого. Но что получится, если протон состоит из отдельных частиц? Совсем другая картина: каждый раз электрон будет отскакивать от какой-то одной из них. И по характеру этих отскоков мы как раз и могли бы судить о распределении входящих в состав нуклона частиц, об их скоростях и других свойствах.

Похоже на радиолокацию, не правда ли? При слежении за летящим самолетом отраженный луч дает оператору сведения о его размерах и скорости, точь-в-точь как в опытах с рассеянием электронов на монолитном нуклоне! На экране локатора видна яркая светящаяся точка. Если же самолет будет поражен ракетой и разлетится на осколки, каждый из них отразит свой луч, к оператору придет целый набор лучей, и он увидит на экране размазанное световое пятно. Если же осколки разлетятся далеко друг от друга, на экране возникнет группа светящихся точек.

Так вот, электроны отскакивают от протона так, будто это целый рой отдельных частичек. Такой же результат дают опыты с рассеянием нейтрино на протонах и нейтронах. Анализ экспериментов показывает, что размеры частиц, рассеивающих электроны и нейтрино, по крайней мере раз в 10 меньше радиуса протона и что их свойства в точности совпадают с тем, что предсказывает теория кварков.

Тут сразу же, конечно, возникает вопрос, почему же тогда не удается обнаружить свободные кварки, не связанные в пары и тройки. Может, опыты недостаточно точны?

Нет, дело не в этом. Опыты повторялись много раз и в разных лабораториях. И все они были выполнены с высокой точностью. И тем не менее всякий раз результат был отрицателен: кварк оставался неуловимым! Создается впечатление, что мы видим туманные контуры чего-то совершенно непохожего на все, с чем мы до сих пор имели дело, и любая попытка описать это «нечто» на языке привычных представлений сразу же приводит к противоречиям. Американский физик Алекс Пановский, который первым обнаружил зернистое строение протонов, как-то заметил: природа, видимо, старается показать нам что-то очень простое, чего, однако, никто не видит...

В начале нашего века, анализируя философские, проблемы, которые выдвинуло развитие физики, В. И. Ленин высказал знаменитую мысль о неисчерпаемости электрона. Развитие науки подтвердило этот вывод, причем и философам, и физикам стало ясно, что под неисчерпаемостью следует понимать не только чисто механическую делимость, когда каждая часть состоит из еще более мелких частей. «Более глубокое» — это не всегда «меньше по размеру». На каждой ступени лестницы, ведущей в недра материи, мы находим множество новых свойств и новых физических объектов. Для их объяснения нам приходится спускаться на следующую ступень, и этот процесс углубления может быть бесконечным. Может, однако, случиться и так, что, изучая микромир, мы будем встречаться со все большей и большей энергией, и круг, так сказать, замкнется: в микромире мы снова встретимся с объектами и явлениями макроскопического порядка. Вот что такое истинная неисчерпаемость, понимаемая широко и в философском, и в физическом смысле.


Перейти на страницу:
Изменить размер шрифта: