Для решения проблемы движения ракеты (космических аппаратов) вокруг центра масс, он также предложил несколько элементарных решений.

Он считал, что если ракета при своем движении начинает вращаться вокруг ее центра инерции, нужно переместить внутри снаряда какую-нибудь массу. Для ракеты это предложение избыточно, а для космического корабля, вообще говоря, приемлемо, хотя и не конкурентоспособно.

К.Э. Циолковский в этой своей работе не разделял две разные задачи: управление движением ракеты, и управление движением космического аппарата. Поэтому он предлагает «употребить для этой цели (для управления движением ракеты) магнитную стрелку, или силу солнечных лучей, сосредоточенных с помощью двояковыпуклого стекла. Каждый раз, когда снаряд с пушкой (двигателем – Г.С.) поворачивается, маленькое и яркое изображение солнца меняет свое относительное положение в снаряде, что может возбуждать расширение газа, давление, электрический ток и движение массы, восстанавливающей определенное направление пушки (двигателя – Г.С), при котором светлое пятно падает в нейтральное, так сказать, нечувствительное место механизма» [110] [с. 75].

Все правильно: именно так и работает оптический датчик ориентации космического аппарата на Солнце, но никто еще не посчитал нужным использовать его на ракете, которая окажется неработоспособной при движении в атмосфере с облаками, закрывающими Солнце, или на космическом аппарате в тени Земли.

Правильно указал К.Э. Циолковский и еще один способ управления полетом ракеты. Он писал: «Основою для регулятора направления снаряда также может служить небольшая камера с двумя быстро вращающимися в разных плоскостях кругами (гироскопами – Г.С). Камера подвешена так, что положение, или, точнее, направление ее не зависит от направления пушки (двигателя – Г.С). Когда пушка поворачивается, камера в силу инерции, пренебрегая трением, сохраняет прежнее абсолютное направление (относительно звезд); это свойство проявляется в высшей степени при быстром вращении камерных дисков. Прицепленные к камере тонкие пружинки при поворачивании пушки меняют в ней свое относительное положение, что может служить причиною возникновения тока и передвижения регулирующих масс» [110] [с. 75].

Да, эта идея нашла самое широкое практическое применение, хотя она очевидна с тех пор, как было выявлено свойство волчка (гироскопа).

Если идеи К.Э. Циолковского в области динамики полета и управления движением ракеты были хотя и не оригинальны за редким исключением, но, тем не менее, более или менее состоятельны, что объясняется некоторой компетентностью их автора в области механики, то его суждения по теплопередаче и термодинамике были, в принципе, ошибочны.

Выше уже отмечалось, что в области теплопередачи К.Э. Циолковский был далеко не специалист, что стало причиной его ошибочных высказываний по теплообмену дирижабля. Естественно, что и в области ракетной техники его «тепловые» суждения не выдерживают никакой критики. Надо отметить, что вопрос этот принципиальный, поскольку само существование жидкостной ракеты зависит от возможности охладить ее двигатель (не будем пока затрагивать космический аппарат, или спускаемую головную часть ракеты), в камере которого развиваются беспрецедентные условия: температура – около 4000°С, давление – несколько десятков атмосфер (сейчас 200 атм), скорость истечения газов – до 4500 м/с. Удается найти способ решения этой проблемы – есть ракета, нет – все остальные рассуждения не более как абстрактные умозаключения.

Процитируем: «… труба (камера сгорания – Г.С.) может быть окружена кожухом, в котором циркулирует какой-нибудь жидкий металл; он передаст жар сильно нагретой части одного конца трубы другой ее части, охлажденной вследствие сильного разряжения паров», «… циркуляция … металлической жидкости в кожухе, окружающем трубы, необходима… для поддержания одной и той же невысокой температуры трубы, т.е. для сохранения ее крепости» [110] [с. 79].

К.Э. Циолковский, к сожалению, заблуждался, поскольку теплоноситель (жидкий металл) должен иметь возможность куда-то сбрасывать тепло, воспринятое от камеры сгорания. Таким холодильником, однако, не может служить выходная часть сопла, охлажденная из-за разряжения истекающих газов, поскольку теплоотвод с нее, в свою очередь, ничтожен (неорганизован). Этот способ охлаждения он будет предлагать и в дальнейшем, особенно в проектах реактивных двигателей.

Еще один способ охлаждения, рассмотренный им в этой статье, состоял в том, чтобы окружать баками с жидкими кислородом и водородом или кожухи с циркулирующим в них металлом, или непосредственно сами «трубы». При этом он полагал, что охлаждение будет осуществляться низкой температурой криогенных жидкостей [112] [с. 79].

В одноименной статье, опубликованной в 1911 году, он также писал, что «Взрывная труба (камера сгорания – Г.С.) … охлаждается низкой температурой жидкого кислорода и водорода, окружающих трубу»… [111] [с. 102].

Ошибка состоит здесь в том, что криогенные жидкости, образно говоря, не имеют теплоемкости. Они могут поглотить лишь незначительное количество тепла фазового перехода (т.е. при переходе из жидкого в газообразное состояние), после чего быстро наступает режим пленочного кипения, при котором образовавшийся газ оттесняет хладоагент от стенки и происходит ее прогар.

Интересно, что этот очевидно нецелесообразный метод охлаждения был практически применен в Германии специалистами Ракетенфлюгплатца на небольшой экспериментальной ракете «Мирак II», двигатель которой размещался в баке с жидким кислородом (рис. 12).

Блеск и нищета К.Э. Циолковского _47.jpg

Рис. 12. Схема емкостного охлаждения двигателя ракеты «Мирак»

1 – бак с О2;

2 – камера;

3 – отверстие для подачи О2;

4 – отверстие для подачи бензина;

5 – бак с углекислотой;

6 – приемник углекислоты.

Попытка запуска ракеты, предпринятая весной 1931 года, привела к ее взрыву [66] [с. 20].

В 1934 году специалисты американского ракетного общества Б. Смитт и Г. Пендрей двигатель ракеты n3 (рис. 13) разместили в бензиновом баке, который, в свою очередь, был окружен баком жидкого кислорода. По свидетельству Г. Пендрея, в ходе работ с ракетой выяснилось, что ее «…нельзя было ни заправить, ни запустить, так как жидкий кислород, соприкасаясь с большой массой нагретого металла наружного бака, просто испарялся и выходил через заправочное отверстие столь же быстро или даже еще быстрее, чем поступал в бак» Г66, с. 201.

Блеск и нищета К.Э. Циолковского _48.jpg

Рис. 13. Схема охлаждения двигателя ракеты АРО №3

1 – камера сгорания;

2 – сопло;

3 – форсунки горючего;

4 – форсунки окислителя;

5 – бак горючего;

6 – бак азота;


Перейти на страницу:
Изменить размер шрифта: