Решение проблемы исключительно красиво и в то же время крайне просто, как большинство оригинальных идей: надо заставить излучение атома складываться с самим собой! А для этого требуется расщепить луч, идущий от каждого источника, на две части, заставить эти две части одного луча пройти разные пути, а затем уже свести в одну точку. Вот при этом условии мы, наблюдая интерференцию и меняя разности путей частей расщепленного луча, и вправду можем измерить интересующие пас перемещение и длину, подсчитывая число чередований света и темноты.
Мы описали принцип, лежащий в основе интерферометрических измерений, открытый еще в 1815 г. французским физиком Огюстеном Френелем (1788–1827). Рассмотрим теперь способы, лежащие в основе действия интерферометров, с помощью которых расщепляют луч и создают разности хода между расщепленными частями луча.
Остановимся поподробней на интерференции лучей света, отраженных от внешней и внутренней сторон прозрачной пластинки или пленки. Явление заслуживает внимания как по своей практической значимости, так и потому, что наблюдается в природе. Кроме того, на этом примере легко уясняются многие важные понятия, которыми мы пользуемся при описании световых и других электромагнитных волн.
Рис. 2.5 позволяет вычислить сдвиг фаз между такими двумя лучами. Разность фаз определяется разностью хода, т. е. разностью путей, пройденных двумя лучами.
Как видно из чертежа, разность хода x = 2d∙cos r. Но как перейти от разности хода лучей к разности фаз, которая определяет, будут ли две волны усиливать или ослаблять друг друга?
Поговорим с читателем, которого не пугает формула косинуса. Колебание светового вектора в любой точке пространства, можно записать следующим образом: A cos 2π∙v∙t. Сдвиг по фазе, на угол φ означает необходимость добавления этого угла к аргументу косинуса. Если мы хотим сравнить фазы точек одной и той же волны, разделенных расстоянием х, то нам надо учесть, сколько длин волн укладывается на этом участке, и полученное число умножить на 2π. Эта величина и будет фазовым сдвигом. Итак, φ = 2π∙x/λ.
Теперь вернемся к интерференции лучей в пластинке. Выражение для разности хода мы записали. Значит, остается лишь поделить эту величину на λ. Но… стоп. Кто нам сказал, что длина волны света в пустоте и внутри прозрачной пластинки одинакова? Напротив, у нас есть все основания подозревать, что с волной что-то происходит, когда она переходит из одной среды в другую. Ведь существует явление дисперсии: фотоны разной частоты ведут себя по-разному. Частота, длина волны и скорость ее распространения, связаны равенством c = v∙λ. Какие же из этих величин меняются, когда волна попадает в другую среду? На этот вопрос отвечает опыт.
Можно непосредственно измерить скорость распространения волны в теле и убедиться в том, что показатель преломления, заставляющий волну изменять направление своего движения при косом падении на поверхность раздела двух сред, равен отношению скоростей распространения света в них. В случае, если одна из сред — воздух (точнее — вакуум),
n = c/v.
где с — принятое обозначение скорости света в пустоте, a v — скорость распространения в среде. Ну, а дальше? Какой из двух параметров — частота или длина волны — меняется при переходе света из воздуха в среду? Чтобы объяснить результаты интерференционных опытов, необходимо предположить, что частота фотона остается неизменной, а длина волны меняется. Поэтому для показателя преломления справедлива также формула
n = λ0/λ,
где λ0— длина волны в воздухе.
Вот теперь мы уже знаем всё, для того чтобы записать разность фаз между лучами в описываемом опыте с пластинкой. Поскольку один из лучей шел в воздухе, а второй — в стекле, то разность фаз будет равна
Что же можно измерить, изучая интерференцию лучей в пластинке? Формула отвечает на этот вопрос. Если известна толщина, то можно определить показатель преломления материала. Если известно значение n, то можно с очень большой точностью (доли длины световой волны) найти толщину, и, наконец, можно измерять длины волн разной «цветности».
Если пластинка имеет переменную толщину, материал ее всюду однороден и угол падения практически одинаков для рассматриваемого участка пластинки, то интерференция будет обнаружена в виде так называемых полос равной толщины. На неровной пластинке возникнет система темных и светлых (или радужных в случае белого света — ведь фотон каждой цветности будет вести себя по-своему) полос, обрисовывающих места равной толщины. В этом состоит объяснение цветных разводов, которые мы так часто видим на пленках нефти или масла, разлитых на воде.
Очень красивые полосы равной толщины легко наблюдать на мыльной пленке. Сделайте проволочную рамку. Опустите ее в мыльный раствор и выньте. Мыло стекает, и в верхней части пленка будет тоньше, чем в нижней. На пленке появятся цветные горизонтальные полосы.
Интерференционный метод широко применяется для измерения малых расстояний или малых изменений расстояний. Он позволяет заметить изменения толщины, меньшие сотых долей длины световой волны. В интерференционных измерениях неровностей на поверхности кристалла удается достигнуть точности порядка 10-7 см.
Широко распространен этот метод в оптической промышленности. Если, скажем, нужно проверить качество поверхности стеклянной пластинки, то это делается рассмотрением полос равной толщины воздушного клина, создаваемого испытуемой пластинкой с идеально плоской поверхностью. Если прижать эти две пластинки с одного края, то образуется воздушный клин. Если обе поверхности плоские, то линии равной толщины будут параллельными прямыми.
Представим себе, что на испытуемой пластинке имеется впадина или бугор. Тогда линии равной толщины искривятся и будут обходить дефектное место. При изменении угла падения света полосы движутся в ту или другую сторону в зависимости от того, бугром или впадиной является дефект. На рис. 2.6 показано, как выглядит поле микроскопа в этих случаях. Оба рисунка соответствуют дефектным образцам. У первого дефект расположен справа у самого края, а у второго — слева.
Точные измерения показателей преломления вещества могут быть проделаны при помощи интерференционных рефрактометров. В этих приборах наблюдается интерференция между двумя лучами, которые по возможности отдалены друг, от друга.
Положим, что на пути одного из лучей установлено тело длиной l и с показателем преломления n. Если показатель преломления среды есть n0, то оптическая разность хода изменится на Δ = l∙(n — n0). Два луча сводят в одну, точку при помощи фокусирующей линзы. Какую же картину будем мы наблюдать в зрительной трубе? Систему светлых и темных полос. Но это не полосы равной толщины, которые видны невооруженным глазом. Система полос, возникающая, в рефрактометре, имеет другое происхождение. Ведь исходный пучок света не идеально параллельному, а слегка расходящийся. Значит, падать на пластинку лучи, составляющие конус, будут под слегка разными углами.
Интерференционные события будут проходить одинаково у лучей одинакового наклона. Они и соберутся в одном месте фокальной плоскости зрительной трубы. Если разность хода между расщепленными частями пучка будет меняться, то полосы придут в движение. При изменении разности хода на величину Δ через окуляр трубы пройдут Δ/λ, полос.