Величина λ является константой для каждого радиоактивного перехода. Вместо того, чтобы пользоваться этой константой, нагляднее характеризовать скорость процесса «временем полураспада», т. е. временем, которое требуется, чтобы половина какого-то количества радиоактивного вещества претерпела превращение. Это время для разных радиоактивных элементов может колебаться в огромных пределах. Так, период полураспада родоначальника рассмотренного нами семейства 238U составляет 4,5 млрд. лет. А вот половина атомов изотопа свинца с массовым числом 214 распадается за одну миллионную долю секунды.
Радиоактивное превращение вполне аналогично химической реакции распада. Было химическое вещество, а затем под действием тепла или света распалось на два других. Скажем, углекислая кислота распалась на воду и углекислый газ. Так же точно в картине распада, который мы только что рассмотрели, ядро тория с массовым числом 230 распадается на ядро радия и ядро гелия.
Если возможен ядерный распад, то, наверное, должны существовать и ядерные реакции, происходящие по принципу
A + B —> С + D
Для того, чтобы произошла подобная химическая реакция, надо столкнуть молекулы веществ А и В. Для того, чтобы осуществить ядерную реакцию, надо столкнуть два атомных ядра.
Такие опыты и начали производиться с 1919 г. Резерфордом. До появления на сцену ускорителей частиц ядерные реакции осуществлялись путем бомбардировки какого-либо вещества альфа-частицами. После того как удалось получить мощные потоки протонов и других ядер, были открыты новые ядерные реакции. Стало ясным, что в принципе можно превратить изотоп любого химического элемента в другой. Можно получить и золото из других веществ. Мечта алхимиков стала явью.
Первой обнаруженной ядерной реакцией типа A + B —> С + D было превращение азота и гелия в кислород и водород. Вот как записывается подобная реакция:
147N + 42He — > 178O + 11H
Обратите внимание на то, что неизменными сохраняются суммы верхних цифр и суммы нижних цифр. Нижние цифры указывают заряд ядра, а верхние — массу, округленную до целого числа, т. е. массовые числа. Таким образом, строго действует закон сохранения электрического заряда. Закон сохранения массы осуществляется, как мы увидим ниже, лишь приближенно. Ну, а сумма массовых чисел сохраняется столь же строго, как и заряд.
Еще в 1920 г. Резерфорд высказал предположение, что должна существовать частица, лишенная электрического заряда и близкая по массе к протону. Резерфорду казалось, что иначе трудно понять, как положительно заряженная альфа-частица проникает в положительно заряженное ядро: ведь одноименно заряженные частицы отталкиваются.
ЭРНЕСТ РЕЗЕРФОРД (1871–1937) — замечательный английский физик, великий экспериментатор. Тонкими и оригинальными опытами показал, в чем заключается радиоактивный распад. Своими классическими опытами по рассеянию веществом потока альфа-частиц обосновал современную теорию строения атома как системы, состоящей из ядра и движущихся около него электронов. Продолжая свои опыты по бомбардировке ядрами различных мишеней, первый осуществил искусственное превращение элементов.
Частица без заряда, получившая название нейтрон, была открыта в 1932 г. Нетрудно понять, почему ее открытие задержалось. Ведь мы видим заряженные частицы по их следам (трекам), которые они оставляют в газе или фотоэмульсии благодаря их способности ионизировать попадающиеся на их пути молекулы. Но электрически нейтральная частица не взаимодействует с электронами, а потому и не оставляет на своем пути следов. Так что о существовании нейтронов можно судить лишь по вторичным эффектам.
Нейтрон был открыт при бомбардировке бериллия альфа-частицами. Эта реакция записывается так:
94Be + 42α — > 126C + 10n
Символ n принадлежит нейтрону. Но как же можно уверовать в существование частицы, которая сама не оставляет следов? По ее действиям. Представьте себе, что на зеленом сукне биллиардного стола находится невидимый глазу биллиардный шар. По столу катится видимый шар и вдруг «ни с того, ни с сего» отскакивает в сторону. Физик не может допустить, что его подводят законы сохранения энергии и импульса. Поэтому он делает вывод, что видимый шар натолкнулся на невидимый. Более того, пользуясь законами сохранения, он может определить все характеристики невидимого шара, выяснив, на какой угол отклонился от линии своего полета и как изменил свою скорость видимый шар.
Число нейтронов подсчитывают следующим образом. На пути нейтронного луча помещают вещество, содержащее атомы бора. При встрече с ядром бора нейтрон прекращает свое существование. Происходит следующая реакция:
105В + 10n —> 73Li + 42α.
Нейтрон пропал, а зато появилась альфа-частица. Регистрируя эти заряженные частицы, оставляющие видимый след в различного рода приемниках, мы сможем точно измерить интенсивность нейтронного луча.
Существует много других методов, которые позволяют с полной достоверностью определить все параметры, характеризующие нейтрон и вообще электрически нейтральную частицу. Совокупность точно согласующихся косвенных доказательств порою не менее убедительна, чем разглядывание видимых следов.
До открытия нейтрона физики полагали, что атомное ядро, построено из электронов и протонов. Это предположение таило в себе много противоречий, и попытки создания теории строения ядра были неудачными. Как только был найден нейтрон, возникающий при ядерных столкновениях, сразу появилась мысль, что атомное ядро построено не нейтронов и протонов. Впервые эта гипотеза была выдвинута советским физиком Д. Д. Иваненко.
С самого начала было ясно, что масса нейтрона если и не равна массе протона, то во всяком случае близка к ней. Поэтому тут же возникло четкое истолкование различий изотопов одного и того же элемента.
Как мы видим, каждому изотопу можно приписать два числа. Одно из них — это порядковый номер в таблице Менделеева Z, который равен числу протонов в ядре. Порядковый помер определяет поэтому число электронов, связанных с ядром. А раз так, то становится ясным, что порядковый номер и должен отвечать за химическое поведение элементов (ведь химические реакции не затрагивают ядер).
Что же касается массового числа, то оно равно общему числу нейтронов и протонов. Так что изотопы одного и того же элемента отличаются друг от друга числом нейтронов в ядре.
Очень точными опытами найдены характеристики обеих частиц, образующих ядро. Масса протона равна 1,6726∙10-24 г, т. е. она в 1836 раз больше массы электрона. Спин протона равен 1/2, а магнитный момент 1,41∙10-23 ед. СГС. Масса нейтрона незначительно больше массы протона, а именно равна 1,6749∙10-24 г. Спин нейтрона равен 1/2. Магнитный момент нейтрона антипараллелен спину и равен 0,966∙10-23 ед. СГС.
Спины и магнитные моменты атомных ядер исследуются разными методами: применяются оптическая спектроскопия, радиоспектроскопия, изучение отклонения пучков частиц в неоднородном магнитном поле. На общих принципах этих измерений мы останавливались в 3-й книге и в предыдущих главах этой книги. А сейчас мы ограничимся лишь изложением главных фактов, полученных за последние десятилетия большим отрядом физиков.