Так же точно изменилось наше отношение к голубому углю. Еще каких-нибудь двадцать лет назад говорилось: не будем возлагать больших надежд на ветер как источник энергии. Источник этот имеет тот же недостаток, что и солнечная энергия: количество энергии, приходящейся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергию ветра стоит использовать лишь в маленьких двигателях — «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах. Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя, — он может играть лишь роль вспомогательного двигателя.

Сегодня рассуждения инженеров, занятых проблемой борьбы с энергетическим голодом, совсем иные. Проекты электростанций, состоящих из тысяч регулярно расположенных «мельниц» с огромными крыльями, близки к осуществлению. Использование голубого, угля также внесет весомый вклад в книгу прихода энергии, нужной человечеству.

Даровым источником энергии является движущаяся вода — приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам. Выработка электроэнергии на ГЭС в 1969 г. в СССР составила 115,2 млрд. кВт ч, в США — 253,3 млрд. кВт. ч, но водные ресурсы используются у нас только на 10,5 %, а в США на 37 %.

Приведенные цифры выработки электроэнергии на ГЭС весьма внушительны, но все-таки, если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь — энергию рек, то пришлось бы уменьшить потребление энергии на земном шаре, даже сли бы на всех реках были построены все технически возможные гидроэлектростанции.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени, пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена ПЭС на реке Ране, а в СССР — станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытной моделью для сооружения проектируемых мощных (около 10 ГВт) приливных электростанций в заливах Белого моря.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20 °C. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником — глубинный. К.п.д. такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

К числу даровых источников энергии относится геотермическая энергия. Не будем говорить о странах, богатых гейзерами. Они встречаются редко. Там, где они есть, их тепло используется для промышленных целей. Однако не следует забывать, что почти в любом месте земного шара, углубившись на 2–3 км, мы встретимся с температурами порядка 150–200 °C. Принцип создания геотермической электростанции самоочевиден. Надо пробурить два канала. В один из них будет поступать холодная вода, а из другого будет откачиваться горячая вода (рис. 6.1).

Фотоны и ядра _46.jpg
ТОПЛИВО

Все описанные до сих пор источники энергии обладают большими преимуществами по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева — это невозвратимое уничтожение земных ценностей.

Каковы же запасы топлива на земном шаре? К обычному топливу, т. е. такому, которое горит от поднесенного огня, относятся уголь, нефть и подземный газ. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия, то же относится и к газу. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает несколько тысяч килокалорий тепла. (Разумеется, топливо бывает самого разного качества. Приведенная цифра — это своего рода единица измерения, как говорят единица условного топлива, которой пользуются при сопоставлении источников энергии разного происхождения.) Таким образом, общие энергетические запасы угля измеряются цифрой порядка 1020 ккал. Это примерно в тысячу раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет — это много только по сравнению с длительностью человеческой. жизни, а человеческая жизнь — ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

Но разве обязательно ограничить химическое топливо теми веществами, которые мы находим в природе? Конечно, нет. В ряде случаев может оказаться, что синтетическое газообразное и жидкое топливо с выгодой заменяет нефть и газ.

В последние годы особое внимание уделяется промышленному производству водорода. Как горючее водород обладает многими достоинствами. Его можно добывать в неограниченных количествах разными путями. Он имеется всюду, так что нет проблемы транспортировки. Водород легко очищается от нежелательных примесей. В ряде случаев окажется более выгодным непосредственное использование тепла сгорания водорода. Можно миновать стадию превращения в электроэнергию.

Три основных процесса получения водорода представляются в настоящее время рентабельными: электролитический способ, термохимическое разложение и, Наконец, облучение водородсодержащих соединений нейтронами, ультрафиолетом и т. д. Оказывается экономически выгодным и получение водорода из угля и нефти в ядерных реакторах. В этих случаях можно предусмотреть передачу водорода к месту потребления по трубам, как это делается сейчас в отношении подземного газа.

Закончим на этом наш краткий обзор химических топлив и зададим вопрос: как обстоит дело с ядерным горючим? Каковы его запасы на Земле? Ведь его нужно так мало. Один килограмм ядерного горючего дает в 2,5 миллиона раз больше энергии, чем такое же количество угля.

Примерные расчеты показывают, что запасы потенциального ядерного горючего (из дальнейшего читатель поймет, почему мы воспользовались этим прилагательным) могут быть представлены следующими величинами: около 2 миллионов тонн урана и 4 миллиона тонн тория. Это вещества, из которых мы умеем сегодня извлекать энергию в атомных реакторах методом расщепления ядер. Прибавятся ли к ним другие вещества? Что же, это нельзя считать исключенным. Число ядерных реакций, дающих энергию, огромно. Вопрос лишь в том, как сделать реакцию цепной.

Пока поведем речь о том, что мы умеем делать сейчас. Как это следует из предыдущей главы, существует лишь одно-единственное встречающееся в природе вещество, которое является ядерным горючим. Это изотоп ypaн-235. Уран, который добывают на рудниках, содержит 99,3 % урана-238 и всего лишь 0,7 % урана-235.

На первый взгляд может показаться, что самая простая идея — это выделить нужный нам изотоп и создать, реакторы, состоящие из кусков или стержней этого вещества, вводя в реакционный объем контрольные стержни, поглощающие нейтроны, для управления ядерной реакцией.

Прежде всего следует отметить, что поглощать нейтроны, не давать им возможности участвовать в цепной реакции, невыгодно, если мы заботимся о мощности установки, т. е. хотим от единицы массы ядерного горючего получат как можно больше энергии в одну секунду. А вот замедлить нейтроны до тепловых скоростей — превратить «быстрые» нейтроны, образующиеся при развале ядра, в «медленные» — вот это весьма полезно для повышения эффективности работы котла, ибо ядра урана-235 поглощают медленные нейтроны с много большей вероятностью.


Перейти на страницу:
Изменить размер шрифта: