И у нас, и за границей были испробованы самые различные конструкции. Прежде всего решается вопрос об изотопном составе используемого урана или другого ядерного горючего. Далее инженер должен решить, в каком виде он желает использовать горючее: в виде раствора солей урана или в виде твердых кусков. Твердому горючему элементу может быть придана различная форма. Можно работать с брусками, но более подходящими являются длинные стержни. Существенную роль играет геометрия расположения топливных элементов. Инженерный расчет поможет найти наиболее целесообразное расположение контрольных стержней, поглощающих нейтроны. Их перемещение (конечно, автоматическое) должно обеспечить нужное значение коэффициента размножения нейтронов.
Различие в поведении медленных (тепловых) нейтронов и быстрых нейтронов позволяет разбить типы, реакторов на две категории, а именно реакторы с замедлителем нейтронов и бридерные реакторы.
Реактор, в котором предусмотрено замедление нейтронов, может работать на природном уране. Количество замедлителя должно быть таким, чтобы не дать возможность значительному числу нейтронов поглощаться ядрами урана-238. А ведь этих ядер примерно в 140 раз больше, чем ядер урана-235. Если количество замедлителя будет малым, то нейтроны не будут успевать уменьшить свою скорость до тепловой, поглотятся ядрами урана-238 и цепная реакция не сможет продолжаться. Реактор, работающий на природном уране или уране, незначительно обогащенном ураном-235, будет все же создавать новое горючее — плутоний. Но его будет образовываться гораздо меньше, чем «сгорающих» ядер.
Пока что на атомных электростанциях используют реакторы на тепловых нейтронах. Наиболее часто применяют четыре типа реакторов: водо-водяные с обычной водой в качестве замедлителя и теплоносителя; графито-водяные с водяным теплоносителем и графитовым замедлителем; реакторы, в которых замедлителем является тяжелая вода, а теплоносителем обычная вода, и, наконец, графито-газовые реакторы.
Причина того, что специалисты в области атомной энергетики сосредоточили свое внимание на реакторах, работающих на тепловых нейтронах, видимо в том, что обогащение урана изотопом 235 является трудной задачей. Но надо помнить замечание, сделанное нами выше: используя в качестве горючего один лишь изотоп уран-235, мы лишаем себя возможности пустить в дело огромные запасы потенциального ядерного горючего.
В настоящее время намечается тенденция к переходу на ядерные реакторы другого типа, работающие на сильно обогащенном топливе и не использующие замедлителя нейтронов.
Допустим, что в котле имеется смесь, в которой на одну часть урана-235 приходится одна часть урана-238. В этом случае число нейтронов, выбывающих из цепной реакции благодаря захвату ураном-238, может быть бóльшим числа нейтронов, расщепляющих ядра урана-235 и продолжающих цепную реакцию. Такой реактор и будет бридерным. В зависимости от геометрии расположения стержней или кирпичей ядерного активного, и потенциального горючего, можно создать бридерный реактор с самым различным процентным отношением этих двух видов топлива и с разным коэффициентом воспроизведения.
Для того чтобы читатель имел представление о параметрах ядерных реакторов, приведем, два примера.
Рис. 6.2 дает общее представление об устройстве ядерного реактора, который в настоящее время используется на американских подводных лодках.
Охладителем является обычная вода. Поскольку обычная вода захватывает нейтроны примерно в 600 раз более эффективно, чем тяжелая вода, то такой реактор может работать только на уране-238, обогащенном ураном-235. Вместо природной доли 0,72 % в топливе этих реакторов содержится от 1 до 4 % урана-235. Реактор, способный давать 1100 МВт электрической энергий, имеет диаметр около 5 м, высоту 15 м и толщину стенок, около 30 см (5-этажный дом!). Если в такой реактор загрузить 80 т окиси урана с содержанием 3,2 % урана-235, то он будет работать 10–12 месяцев (после чего надо менять стержни). Вода в реакторе нагревается да 320 °C. Она циркулирует под давлением около 300 атм. Горячая вода превращается в пар и подается на лопасти турбины.
Остановимся теперь вкратце на французском проекте мощного бридерного реактора, получившем название Суперфеникс.
Предполагается в качестве топлива использовать смесь плутония-239 и урана-238. Замедлитель не будет использоваться, так что нейтроны не теряют скорости от момента своего рождения во время распада ядра до встречи с другим атомным ядром горючего материала.
То, что реактор работает на быстрых нейтронах, приводит к большой компактности. Ядро реактора не превосходит 10 м3. Таким образом, может выделяться большое количество тепла в единице объема.
Отвод тепла нельзя производить водой, поскольку она замедляет нейтроны. Для этой цели можно использовать жидкий натрий. Натрий плавится при температуре 98 °C и кипит при 882 °C при атмосферном давлении. Температура жидкого натрия по техническим причинам не должна быть выше 550 °C. Поэтому нет необходимости в повышении давления охлаждающей жидкости, к чему прибегают в тех случаях, когда охладителем является вода.
Размеры Суперфеникса такие: внутренний диаметр 64 м, высота около 80 м. Солидное 20-этажное здание! Ядро реактора представляет собой гексагональную призму, собранную (как пачка карандашей) из тонких стержней длиной 5,4 м. Стержни горючего материала перемежаются с контрольными стержнями.
У нас нет места (да и нет необходимости в книге по физике) описывать, каким образом организовано охлаждение ядра реактора. Достаточно сказать, что это делается в три приема. Первичный трубопровод — натриевый, он забирает тепло от реактора и отдает его в котел, откуда тепло передается второму, также натриевому трубопроводу, а затем третьему, по которому циркулирует водно-паровая смесь. Дальше — обычный путь к паровой турбине.
Расчеты показывают, что установка должна дать 3000 МВт тепловой мощности и 1240 МВт электрической.
Не могу не подчеркнуть еще раз, что необходимость превращать ядерную энергию в электрическую, проходя через тепловую стадию, оставляет чувство большой досады. Все равно, как если бы мы установили автомобильный двигатель с соответствующими приводами на обычной телеге. Но пока нет никакой идеи, как можно миновать эту стадию, создающую, пожалуй, основные трудности в строительстве атомных электростанций. К общему недостатку всех ТЭС здесь добавляется необходимость введения промежуточных трубопроводов. Ведь нужно исключить непозволительную радиоактивность пара, поступающего в турбину.
Приведем еще несколько данных для этого проекта. Максимальный поток нейтронов на 1 см2 в секунду должен равняться 6,2.1015. Коэффициент воспроизведения будет равен 1,24. Замена сгоревших элементов на новые должна производиться один раз в год. Быстрота потока жидкого натрия (техники говорят — массовый расход) 16,4 т/с (это в первичном трубопроводе). Выходящий перегретый пар будет выпускаться под давлением 18 МПа и при температуре 490 °C.
Скажем несколько слов о «золе» ядерного горючего. В результате деления ядер горючего возникает большое число радиоизотопов — этот процесс неуправляем; но мы имеем возможность получать любые изотопы, помещая в реактор какие-либо вещества. Поглощая нейтроны, они будут порождать новые атомы.
Разумеется, можно получать радиоизотопы и в ускорителях, подвергая материалы бомбардировке протонами или ядрами других элементов.
Число искусственных элементов, полученных к настоящему времени, весьма велико. Заполнились «пустые» места в таблице Менделеева: элементы с порядковыми номерами 61, 85 и 87 не имеют долгоживущих стабильных изотопов, и поэтому в природе их нет. Удалось и продлить таблицу Менделеева. Элементы с номером более высоким, чем 92, называются трансурановыми. Таблица Менделеева продлена до номера 105. Каждый трансурановый элемент получен в нескольких изотопических вариантах. Кроме новых химических элементов, изготовлено большое число радиоизотопов тех химических элементов, которые в своей стабильной форме встречаются в земной коре.