Возникающий спектр удобно разбить на ряд «серий». Каждая серия подчинена своему нижнему уровню. В видимой части лежит так называемая серия Бальмера. Ее объяснение было первым триумфом теории строения атома Нильса Бора.
НИЛЬС БОР (1885–1962) — знаменитый датский физик. Создал первую квантовую модель атома и таким образом открыл закон квантования энергии. Активно участвовал в разработке принципов квантовой механики. Показал принципиальную неприменимость к микромиру понятий подходящих для описания поведения макроскопических тел. Внес большой вклад в теорию строения атомного ядра.
Не все энергетические переходы равновероятны. Чем выше вероятность перехода, тем сильнее соответствующая линия. Есть и запрещенные переходы.
Большим торжеством физиков-теоретиков явилось то, что они исчерпывающим образом объяснили спектр атомов водорода, решая знаменитое уравнение квантовой механики, выведенное в 1926 г. Эрвином Шредингером.
На спектры атомов влияют внешние поля. Линии расцепляются на несколько компонент под действием электрического поля (эффект Штарка) и под действием магнитного (эффект Зеемана). Мы не станем объяснять эти интересные явления. Скажем лишь, что разобраться в некоторых из них удалось только после того, как Гаудсмит и Уленбек предположили, что электрон обладает спином. О том, как спин обнаруживает себя в опытах непосредственно, уже говорилось в 3-й книге.
И, наконец, последнее замечание, касающееся картинки энергетических уровней. Мы видим, что предел, к которому подходят уровни, обозначен числом 13,53. Что это за число? Это ионизационное напряжение. Если помножить заряд электрона на величину этого напряжения в вольтах, то мы получим величину работы, которую надо затратить, чтобы оторвать электрон от ядра, иными словами, чтобы разрушить атом водорода.
Спектры атомов возникают в результате электронных переходов. Как только мы переходим от атомов к молекуле, сразу же возникает необходимость в учете еще двух составляющих энергии. Молекула может вращаться, атомы молекулы могут совершать колебания по отношению друг к другу. Все эти виды энергии тоже квантуются, они могут иметь лишь определенные дискретные значения. Таким образом, энергетическое состояние молекулы описывается состоянием ее электронного облака (электронный уровень), состоянием колебательного движения (колебательный уровень) и состоянием вращения (вращательный уровень). Приходится оперировать тремя типами данных — так сказать, номером дома, этажа и квартиры.
Но что играет роль этажа, а что — квартиры? Какие энергетические уровни разделены большими промежутками, а какие малыми? На эти вопросы отвечает рис. 1.4.
На схеме показаны два электронных уровня е' и е' (номера домов). Этажи — колебательные уровни — помечены буквой v, а номера квартир — вращательные уровни — буквой j. Правда, такая нумерация домов не принята. Используется, как известно, сплошная нумерация квартир, а мы при описании спектров молекулы нумеруем квартиры на каждом этаже, начиная с нуля.
Как видите, промежутки между вращательными уровнями самые маленькие, а наибольшей является разность между электронными уровнями (е' и е").
Положим, у молекулы возможны электронные уровни, лежащие при 100, 200, 300…. единицах энергии, колебательные уровни — при 10, 20, 30…. единицах, вращательные — при 1, 2, 3…. единицах; тогда молекула, находящаяся на втором электронном уровне, первом колебательном и третьем вращательном, будет иметь энергию 213 единиц.
Итак, энергия молекулы может быть задана в виде
Е = Еэл + Екол + Евр.
Частота излученного или поглощенного света будет всегда соответствовать разности (значок Δ) двух уровней, т. е.
v = (1/h)∙(ΔЕэл + ΔЕкол + ΔЕвр).
Хотелось бы выделить такие переходы, при которых меняется только один «сорт» энергии. Практически это возможно, только для вращательных переходов, и мы легко поймем, почему.
Начнем исследовать поглощение электромагнитных воли группой молекул с самых длинных волн, т. е. с палых порций энергии hv. До тех пор, пока величина кванта энергии не станет равной расстоянию между двумя ближайшими уровнями, молекула поглощать не будет. Постепенно увеличивая частоту, мы дойдем до квантов, способных поднять молекулу с одной «вращательной» ступеньки на другую. Это произойдет, как показывает опыт, в области микроволн (край радиодиапазона), или, иначе говоря, в области, далекого инфракрасного спектра. Длины волн порядка 0,1–1 мм будут поглощаться молекулами. Возникнет чисто вращательный спектр.
Новые явления произойдут тогда, когда мы направим на вещество излучение, обладающее квантами энергии, достаточными для перевода молекулы с одного колебательного уровня на другой. Однако мы никогда не получим чисто колебательного спектра, т. е. такую серию переходов, при которой номер вращательного уровня сохранялся бы. Напротив, переходы с одного колебательного уровня на другой будут затрагивать различные вращательные уровни. Скажем, переход с нулевого (самого низкого) колебательного уровня на первый может состоять в подъеме с третьего вращательного уровня на второй или со второго на первый и т. д. Таким образом, возникнет колебательно-вращательный спектр. Мы будем наблюдать его в инфракрасном свете (3—50 мкм). Все переходы с одного колебательного уровня на другой будут мало отличаться по энергии и дадут в спектре группу очень близких линий. При малом разрешении эти линии сольются в одну полосу. Каждая полоса соответствует определенному колебательному переходу.
Мы попадем в новую спектральную область, в область видимого света, когда энергия кванта станет достаточной для перевода молекулы с одного электронного уровня на другой. И здесь, разумеется, невозможны ни чисто электронные переходы, ни электронно-колебательные. Возникнут сложные переходы, в которых энергетический переход сопровождается переменой и «дома», и «этажа», и «квартиры». Поскольку колебательно-вращательный’ переход представляет собой полосу, то спектр в видимой области будет практически сплошным.
Характеристические спектры атомов и молекул долгие годы исполняли (и продолжают исполнять и сегодня) скромную роль помощников в деле определения химического, строения и состава веществ. Революционные события и области спектроскопии произошли совсем недавно.
Первые тридцать лет нашего века ознаменованы фантастическими успехами теоретической физики. В эти годы были открыты такие важнейшие законы природы, как законы механики больших скоростей, законы строения атомного ядра, законы квантовой механики. Последующие сорок лет демонстрируют не менее феноменальные успехи приложения теории к практике. В эти годы человечество научилось извлекать энергию из атомных ядер, получило в свое распоряжение полупроводниковые транзисторы, революционизирующие радиотехнику и приведшие к созданию ЭВМ, и овладело лазерной техникой. Эти три приложения, по сути дела, и привели к событиям, которые именуют научно-технической революцией.
В этом параграфе речь пойдет о лазерах. Задумаемся над обстоятельствами, которые не позволяют нам, действуя традиционными методами, создать сильный направленный пучок света.
Самый мощный свет, собранный в предельно узкий пучок, расходится и теряет свою интенсивность на расстояниях. И лишь в научно-фантастическом романе Алексея Толстого герой придумывает «гиперболоид», позволяющий создавать лучи, способные жечь, резать, нести громадную энергию на далекое расстояние. Разумеется, можно изготовить такое вогнутое зеркало, которое создаст параллельный пучок света. Для этого надо в фокус зеркала поместить точечный источник. Но точечный — это математическая абстракция. Ну, пусть не точечный, а просто небольшой. Однако, даже накалив шарик до 6000 К (а больше ни один материал не выдерживает), мы получим пучок света жалкой интенсивности. А как только начнем, увеличивать размеры источника, так сразу же вместо параллельного пучка лучей получим веер световых «нитей» и интенсивность луча прожектора будет быстро убывать с расстоянием.