Фотоны и ядра _54.jpg

Но среди этих звезд зачастую находили какую-нибудь одну, которая явно смещалась по отношению к своим соседям. Принимая одну из «неподвижных» звезд как бы за точку отсчета, можно измерить угловое смещение звезды, менявшей свое расположение по отношению к неизменному созвездию. Этот угол смещения имеет смысл параллакса.

Еще в XVII веке, после изобретения Галилеем телескопа, астрономы измерили параллаксы планет, наблюдая их смещения по отношению к «неподвижным» звездам. Тогда подсчитали, что Земля отстоит от Солнца на расстоянии 140 млн. км. Совсем неплохая точность!

Для невооруженного глаза взаимное расположение звезд остается всегда неизменным. Но при помощи фотографии звездного неба с разных позиций можно обнаружить параллактическое смещение звезд. Если сделать две фотографии какого-либо участка звездного неба из одной и той же обсерватории с промежутком времени полгода, то расстояние между точками наблюдения будет равно почти 300 млн. км.

Измерения расстояний до звезд с помощью радара невозможны. Поэтому схема измерения, которую иллюстрирует рис. 7.1, вполне современна.

Такого рода снимки приводят нас к заключению, что есть звезды, которые заметно перемещаются по отношению к другим звездам. Было бы крайне нелогично допустить, что существуют звезды подвижные и звезды неподвижные. Напрашивается вывод, что те звезды, взаимное расположение которых сохранилось неизменным, находятся много дальше, чем блуждающая звезда. Как бы то ни было, мы получаем возможность с помощью хороших инструментов измерить параллаксы многих звезд. Измерения параллакса с точностью до одной сотой секунды дуги были проведены для многих звезд. Оказалось, что ближайшие из них находятся на расстояниях, больших одного парсека.

Один парсек есть расстояние, дающее угловое смещение в одну секунду, если за базис взять средний радиус земной орбиты. Легко подсчитать» что один парсек равен 30,26 триллиона километров.

Для измерения расстояний часто пользуются световыми годами. Один световой год — путь, который пройдет свет за год. Один парсек равен 3,26 светового года.

Параллактический метод применим до расстояний порядка сотен световых лет. А как измерить расстояния до более далеких звезд? Это оказывается уже совсем не простым делом, и уверенность в правильности приблизительных оценок (ручаться можно большей частью лишь за одну значащую цифру) получается сопоставлением результатов разных измерений.

Один из способов (а их много, и у нас нет возможности на них останавливаться) заключается в следующем. Если известно расстояние, до звезды R и видимая звездная величина m (мера освещенности, создаваемая звездой на Земле), то, пользуясь законом, согласно которому интенсивность изменяется обратно пропорционально квадрату расстояния от источника, можно вывести следующую формулу:

М = m — 5∙lg R + 5.

Здесь М есть так называемая абсолютная звездная величина. Это величина, которую имела бы звезда, если бы находилась от нас на некотором стандартном расстоянии, которое принимают равным 10 пк.

Мы с полным основанием полагаем, что эта формула справедлива и для далеких звезд. Но как ею воспользоваться для определения расстояния до звезды? Вот на этом-то самом интересном вопросе мы, к сожалению, и не можем остановиться подробнее: не хватает места в нашей маленькой книге. Оказывается, что для некоторой категории звезд удается построить график, который показывает как меняется отношение интенсивностей определенных пар линий звездного спектра в функции величины М. Ну, а интенсивности спектральных линий астрономы измерять умеют.

Для некоторых звезд, которые периодически меняют свой блеск (они принадлежат к классу так называемых цефеид), показано, что светимость, т. е. величина светового потока, заключенного в единице телесного угла (может относиться как к области спектра, так и к суммарному излучению), плавно возрастает с увеличением периода. Светимость, разумеется, строго связана с величиной М. Для этих переменных звезд их расстояние до наблюдателя устанавливается со значительной точностью.

А вот еще одна идея, которой можно воспользоваться для измерения «масштаба» Вселенной.

Звезды Вселенной не разбросаны во Вселенной как попало. На непредставимо огромных расстояниях от нас расположены различные звездные скопления? Они движутся по отношению к Солнечной системе самым разным образом. Это движение помогает нам определить расстояния до звездных скоплений. На помощь приходит эффект Доплера.

Формулы, которые мы рассматривали в 3-й книге, справедливы для любых колебаний. Поэтому частоты спектральных линий, наблюдаемые в спектре звезды, позволяют определить скорость ее движения в направлении от Земли или к ней. Так как с в формуле

Фотоны и ядра _54.jpg_0

есть скорость света 300 000 км/с, то понятно, что движение звезды должно быть достаточно быстрым, а спектрограф должен быть весьма высокого качества для того, чтобы мы обнаружили смещение спектральных линии.

Прошу заметить, что естествоиспытатель вполне уверен в том, что водород, находящийся в недрах звезды и заявляющий нам о своем присутствии в объекте, находящемся на невообразимо колоссальном расстоянии, — это такой же водород, как и тот, с которым мы имеем дело в земных условиях. Если бы звезда покоилась, то спектр водорода обязан был бы выглядеть совершенно так же, как спектр, который мы получаем от газоразрядной трубки (вот какова уверенность физика в единстве мира!). Но линии оказываются заметно сдвинутыми, и скорости галактик — это сотни, а то и десятки тысяч километров в секунду. Нет сомневающихся в приведенном объяснении. Да и как сомневаться? Ведь спектр водорода состоит из очень большого числа линий, и мы видим сдвиг не одной линии, а всех линий спектра в согласии с формулой Доплера.

Но вернемся к измерению звездных расстояний. Какую помощь может оказать нам знание скоростей движения звезд? Все просто… но, конечно, лишь в том случае, если мы заметим, что звезда за год сдвинулась (опять-таки по отношению к другим звездам, которые в данном измерении можно считать «неподвижными») на какое-то расстояние. Если дуговое перемещение звезды φ (перпендикулярно лучу света, который до нас доходит) известно, то, зная тангенциальную скорость, найдем расстояние до звезды R по формуле

Rφ/t = v

Вместо t надо подставить время, которое ушло на перемещение звезды.

Но позвольте, скажет читатель, ведь в формулу входит тангенциальная скорость, а направление движения звезды нам не известно. Совершенно справедливое возражение. Поэтому приходится поступать следующим образом. Отбирается большое число звезд с одинаковым периодом изменения светимости. Для всех этих звезд измеряют лучевую скорость. Она будет колебаться от нуля (если звезда движется перпендикулярно лучу) до максимума (если звезда движется вдоль луча). Полагая, что в среднем тангенциальные и лучевые скорости одинаковы, можно подставить в написанную выше формулу среднее значение измеренных нами скоростей.

РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ

В результате измерений расстояний, мы можем описать звездный мир следующим образом. Наблюдаемая Вселенная разбита на огромное число звездных скоплений, которые получили название галактик. Наша Солнечная система входит в Галактику, которую каждый видел на небе. Это Млечный Путь. Наша Галактика имеет форму диска, диаметр которого — около 100 тысяч световых лет. В Галактике что-нибудь около 1011 звезд разных типов. Солнце — одна из таких звезд, и находится наше светило на периферии Галактики. Звезды отдалены друг от друга на огромные расстояния. Расстояние между звездами в среднем в 10 миллионов раз превышает размер звезды. Для того чтобы добиться аналогичного разрежения в воздушном пространстве, надо было бы уменьшить плотность воздуха в 1018 раз.


Перейти на страницу:
Изменить размер шрифта: