Специальная теория относительности привела к необходимости ввести поправки в законы механики для тел, движущихся со скоростями, близкими к скорости света. Общая теория относительности вносит поправки в привычные представления о пространстве, когда речь идет об огромных расстояниях. Именно поэтому разговор об этой теории уместен в главе, посвященной физике Вселенной.
Общая теория относительности покоится на следующем принципе: нет таких экспериментов, с помощью которых можно было бы отличить движение тел под действием поля тяготения от движения в соответствующим образом подобранной неинерциальной системе отсчета.
Рассмотрим несколько простейших примеров. Мы находимся в лифте, который падает вниз с ускорением а. Выпустим из руки шарик и сообразим, какой характер будет иметь его падение. Как только шарик будет выпущен, начнется, с точки зрения инерциального наблюдателя, свободное падение с ускорением g. Так как лифт падает с ускорением то ускорение по отношению к полу лифта будет (g — а). Наблюдатель, находящийся в лифте, может описать движение падающего тела при помощи ускорения g' = g — a. Иначе говоря, наблюдатель в лифте может не говорить об ускоренном движении лифта, «изменив» ускорение поля тяжести в своей системе.
Теперь сравним два лифта. Один из них неподвижно висит над Землей, а другой движется в межпланетной пустоте с ускорением а по отношению к звездам. Все тела в неподвижном над Землей лифте обладают способностью свободно падать с ускорением g. Но такой же способностью обладают тела внутри межпланетного лифта. Они будут «падать» с ускорением — а на «дно» лифта.
Выходит, что действие поля тяжести и проявления ускоренного движения неотличимы.
Поведение тела в ускоренно движущейся системе координат равнозначно поведению тела в присутствии эквивалентного поля тяжести. Однако эта эквивалентность может быть полной, если мы ограничим себя наблюдениями на небольших участках пространства. Действительно, представим себе «лифт» с линейными размерами пола в тысячи километров. Если такой лифт неподвижно висит над земным шаром, то явления в нем будут происходить иначе, чем в том случае, когда лифт будет двигаться с ускорением а по отношению к неподвижным звездам. Это ясно из рис. 7.3: в одном случае тела падают косо на дно лифта, в другом случае — отвесно.
Таким образом, принцип эквивалентности справедлив для тех объемов пространства, в которых поле можно считать однородным.
Принцип эквивалентности поля тяготения с нужным образом подобранной локальной системой отсчета приводит к важному выводу: поле тяготения связано с кривизной пространства и искажением хода времени.
Два наблюдателя заняты измерением расстояния и промежутков времени. Их интересуют события, происходящие на вращающемся диске. Один наблюдатель находится на диске, а другой неподвижен (по отношению к звездам). Впрочем, работает только тот исследователь, который является, так сказать, жителем диска. Неподвижный наблюдатель лишь следит за работой своего коллеги.
Первый опыт заключается в измерении радиального расстояния, т. е. расстояния между двумя предметами, установленными на одном и том же радиусе диска на разных расстояниях от центра. Измерение производится обычным способом, а именно: между концами интересующего исследователей отрезка укладывается сколько-то раз стандартная линейка. С точки зрения обоих исследователей, длина линейки, расположенной перпендикулярно направлению движения, одна и та же. Поэтому между нашими двумя исследователями не возникнут разногласия по поводу длины радиального отрезка.
Теперь житель диска приступает ко второму опыту. Он желает измерить длину окружности. Линейку приходится укладывать вдоль движения. Конечно, надо учитывать кривизну окружности. Поэтому измерение следует проводить при помощи небольшой линейки, так, чтобы длину касательного отрезка можно было приравнять длине дуги. Наблюдатели не станут спорить о том, сколько раз уложилась линейка по длине окружности. Но тем не менее их мнения по поводу длины окружности разойдутся. Ведь неподвижный наблюдатель будет считать, что линейка сократилась, поскольку в этом втором опыте она расположена вдоль движения.
Итак, радиус окружности для обоих наблюдателей один и тот же, а длина окружности разная. Неподвижный наблюдатель приходит к выводу, что формула длины окружности 2π∙r неверна. Для меня, скажет неподвижный наблюдатель, длина окружности меньше, чем 2π∙r.
Этот пример показывает вам, как теория относительности приходит к отказу от евклидовой геометрии, или (это то же самое, сказанное другими словами) к представлению об искривлении пространства.
Аналогичные «безобразия» произойдут и с часами. Часы, закрепленные на разных расстояниях от оси вращения, идут с различной скоростью. Все они будут идти медленнее, чем неподвижные часы. При этом замедление тем больше, чем дальше от центра диска находятся часы. Неподвижный наблюдатель скажет, что пользоваться часами и линейками, если живешь на диске, можно лишь в том случае, если находишься на определенном расстоянии от центра. Пространство и время обладают локальными особенностями.
Теперь вспомним о принципе эквивалентности. Раз такие локальные особенности времени и пространства проявляются на вращающемся диске, значит, так же протекают явления и в поле тяготения. С диском дело обстоит так же, как и с лифтом, изображенным на рис. 7.3. Ускоренное движение неотличимо от движения в поле тяготения, направленного в сторону, обратную ускорению.
Таким образом, локальное искривление пространства и времени равносильно наличию поля тяготения.
Замкнутость Вселенной, о которой шла речь в предыдущем параграфе, несомненно может рассматриваться как подтверждение общей теории относительности. Однако читатель должен иметь в виду, что гипотеза о замкнутости Вселенной не является на сегодня единственно возможной.
Имеется возможность из хитроумных уравнений общей теории относительности вывести строгим математическим рассуждением ряд количественных следствий. Эйнштейн показал, что, во-первых, проходя вблизи Солнца, лучи света должны отклоняться. Луч, идущий в непосредственной близости от Солнца, должен отклониться на 1,75". Измерения дали величину 1,70. Во-вторых, орбита планеты Меркурий (вернее, ее перигелий) должна поворачиваться в своей плоскости. Расчет показывает, что это перемещение должно быть равно за столетие 43". Именно такое число и дают наблюдения. И еще одно предсказание, которое было подтверждено опытом: фотон тратит энергию (а значит, меняется частота света), преодолевая силы тяготения.
Общая теория относительности является одним из величайших завоеваний человеческого мышления. Ее создание сыграло огромную роль в развитии взглядов на Вселенную и революционизировало физику.
Физика Вселенной находится в стадии бурного развития. Ее никак нельзя назвать завершенной областью науки, как, скажем, механику малых скоростей или термодинамику. Поэтому не исключено, что при исследовании звезд будут открыты новые законы природы. Пока такого не произошло. Как бы то ни было, картина Вселенной, которую время от времени набрасывает тот или иной физик в популярной статье, все время терпит изменения. Так что и то, что я рассказываю в этой главе, возможно, будет пересмотрено через десяток-другой лет.
Уже давно астрономы понимали, что звезды бывают разные. При помощи телескопа, спектрографа и интерферометра удается определить много физических величин, которые могут быть занесены в паспорт звезды.
Как можно полагать по аналогии с земными опытами (ср. с. 12), характер спектра определяет температуру поверхности звезды. С этой температурой однозначно связан, наблюдаемый цвет звезды. Если температура 3000–4000 К, то цвет красноватый, если 6000–7000 К — желтоватый. Бледно-голубые звезды имеют температуру свыше 10000—12000 К. Выйдя в космические просторы, физики нашли звезды, максимум излучения которых лежит в области рентгеновских и даже гамма-лучей. Это означает, что температуры звезд могут достигать и миллионов кельвинов.