Fтp = kP.
А как же учитываются свойства поверхностей? Ведь хорошо известно, что одни и те же сани на тех же полозьях скользят совсем по-разному, смотря по тому, обиты полозья железом или нет. Эти свойства учитываются коэффициентом пропорциональности k. Он называется коэффициентом трения.
Коэффициент трения металла по дереву равен 1/2. Сдвинуть лежащую на деревянном гладком столе металлическую плиту массой в 2 кг удастся лишь силой в 1 кгс.
А вот коэффициент трения стали по льду равен всего лишь 0,027. Ту же плиту, лежащую на льду, удастся сдвинуть силой, равной всего лишь 0,054 кгс.
Одна из ранних попыток снизить коэффициент трения скольжения изображена на фрагменте росписи в египетской гробнице, датируемом приблизительно 1650 г. до н. э. (рис. 6.1). Раб льет масло под полозья саней, везущих большую статую.
Рис. 6.1
Площадь поверхности не входит в приведенную формулу: сила трения не зависит от площади поверхности соприкосновения трущихся тел. Нужна одинаковая сила, чтобы сдвинуть с места или тащить с неизменной скоростью широкий лист стали весом в килограмм и килограммовую гирю, опирающуюся на поверхность лишь малой площадью.
И еще одно замечание о силах трения при скольжении. Сдвинуть тело с места несколько труднее, чем тащить: сила трения, преодолеваемая в первое мгновение движения (трение покоя), больше последующих значений силы трения на 20-30%.
Что можно сказать о силе трения при качении, например для колеса? Как и трение скольжения, она тем больше, чем больше сила, прижимающая колесо к поверхности. Кроме того, сила трения качения обратно пропорциональна радиусу колеса. Это и понятно: чем больше колесо, тем меньшее значение имеют для него неровности поверхности, по которой оно катится.
Если сравнивать силы, которые приходится преодолевать, заставляя тело скользить и катиться, то разница получается очень внушительная. Например, чтобы тянуть по асфальту стальную болванку массой в 1 т, нужно приложить силу в 200 кгс - на это способны лишь атлеты. А катить на тележке эту же болванку сможет и ребёнок, для этого нужна сила не более 10 кгс.
Немудрено, что трение качения "победило" трение скольжения. Недаром человечество уже очень давно перешло на колесный транспорт.
Замена полозьев колесами еще не есть полная победа над трением скольжения. Ведь колесо надо насадить на ось. На первый взгляд невозможно избежать трения осей о подшипники. Так думали на протяжении веков и старались уменьшить трение скольжении в подшипниках лишь различными смазками. Услуги, оказываемые смазкой, немалые - трение скольжения уменьшается в 8-10 раз. Но даже и при смазке трение скольжения в очень многих случаях столь значительно,; что обходится чрезмерно дорого. В конце прошлого века это обстоятельство сильно тормозило техническое развитие. Тогда и возникла замечательная идея заменить в подшипниках трение скольжения трением качения. Эту замену осуществляет шариковый подшипник. Между осью и втулкой поместили шарики. При вращении колеса шарики покатились по втулке, а ось - по :шарикам. На рис. 6.2 показано устройство этого механизма. Таким способом, трение скольжения было заменено трением качения. Силы трения уменьшились при этом в десятки раз.
Рис. 6.2
Роль подшипников качения в современной технике трудно переоценить. Их делают с шариками цилиндрическими роликами, с коническими роликами. Такими подшипниками снабжены все машины, большие и малые. Существуют шариковые подшипники размером в миллиметр; некоторые подшипники для больших машин весят более тонны. Шарики для подшипников (вы их видели, конечно, в витринах специальных магазинов) производят самых различных диаметров - от долей миллиметра до нескольких сантиметров.
Вязкое трение в жидкостях и газах
До сих пор мы говорили о "сухом" трении, т. е. о трении, возникающем при соприкосновении твердых предметов. Но и плавающие, и летающие тела также подвержены действию сил трения. Меняется источник трения - сухое трение заменяется "мокрым".
Сопротивление, которое испытывает движущееся в воде или воздухе тело, подчиняется иным закономерностям, существенно отличным от законов сухого трения, о которых мы говорили выше.
Правила поведения жидкости и газа в отношении трения не различаются. Поэтому все сказанное ниже относится в равной степени и к жидкостям, и к газам. Если мы для краткости будем говорить ниже о "жидкости", сказанное будет относиться в равной степени и к газам.
Одно из отличий "мокрого" трения от сухого заключается в отсутствии трения покоя - сдвинуть с места висящий в воде или воздухе предмет можно, вообще говоря, сколь угодно малой силой. Что же касается силы трения, испытываемой движущимся телом, то она зависит от скорости движения, от формы и размеров тела и от свойств жидкости (газа). Изучение движения тел в жидкостях и газах показало, что нет единого закона для "мокрого" трения, а имеются два разных закона: один - верный при малых, а другой - при больших скоростях движения. Наличие двух законов означает, что при больших и малых скоростях движения твердых тел в жидкостях и газах обтекание средой движущегося в ней тела происходит по-разному.
При малых скоростях движения сила сопротивления прямо пропорциональна скорости движения и размеру тела:
F ~ υL.
Как надо понимать пропорциональность размеру, если не сказано, о какой форме тела идет речь? Это значит, что для двух тел, вполше подобных по форме (т. е. таких, все размеры которых находятся в одинаковом отношении), силы сопротивления относятся так же, как линейные размеры тел.
Величина сопротивления в огромной степени зависит от свойств жидкости. Сравнивая силы трения, которые испытывают одинаковые предметы, движущиеся с одинаковыми скоростями в разных средах, увидим, что тела испытывают тем большую силу сопротивления, чем более густой, или, как говорят, чем более вязкой будет среда. Поэтому трение, о котором идет речь, уместно назвать вязким трением. Вполне понятно, что воздух создает незначительное вязкое трение, примерно раз в 60 меньше, чем вода. Жидкости могут быть "негустые", как вода, и очень вязкие, как сметана или мед.
О степени вязкости жидкости можно судить либо по быстроте падения в ней твердых тел, либо по быстроте выливания жидкости из отверстий.
Вода выльется из пол-литровой воронки за несколько секунд. Очень вязкая жидкость будет вытекать из нее часами, а то и днями. Можно привести пример и еще более вязких жидкостей. Геологи обратили внимание, что в кратере некоторых вулканов на внутренних склонах в скоплениях лавы встречаются шаровидные куски. На первый взгляд совершенно непонятно, как внутри Кратера мог образоваться такой шар из лавы. Это непонятно, если говорить о лаве как о твердом теле. Если же лава ведет себя как жидкость, то она будет вытекать из воронки кратера каплями, как и любая другая жидкость. Но только одна капля образуется не за долю секунды, а за десятилетия. Когда капля станет очень тяжелой, она оторвется и "капнет" на дно кратера вулкана.
Из этого примера ясно, что не следует ставить на одну доску настоящие твердые тела и аморфные тела, которые, как мы знаем, много более похожи на жидкость, чем на кристаллы. Лава - как раз такое аморфное тело. Оно кажется твердым, но па самом деле это очень вязкая жидкость.
Как вы думаете, сургуч - твердое тело? Возьмите две пробки, положите их на дно двух чашек. В одну налейте какую-нибудь расплавленную соль (например, селитру - ее легко достать), а в другую чашку с пробкой налейте сургуч. Обе жидкости застынут и погребут пробки. Поставьте эти чашки в шкаф и надолго забудьте о них. Через несколько месяцев вы увидите разницу между сургучом и солью. Пробка, забитая солью, по-прежнему будет покоиться на дне сосуда. А пробка залитая сургучом, окажется наверху. Как же это произошло? Очень просто: пробка всплыла совсем так,; как она всплывает в воде. Разница лишь во времени; когда силы вязкого трения малы, пробка всплывает вверх мгновенно, а в очень вязких жидкостях всплывание продолжается месяцами.