5. Философская загадка космофизики, или можете сами побыть космофизиком

Приезжайте ко мне, дорогой соседушко, ей-богу.

Откроем что-нибудь вместе…

Чехов А.П. Письмо к ученому соседу

Космофизика сейчас быстро движется вперед. О современном положении дел можно судить по такому невыдуманному эпизоду.

Идет научный семинар. Докладчик с воодушевлением начинает свое выступление: "Эта область науки так быстро развивается и успехи ее настолько велики, что выводы устаревают буквально через год-два после того, как они были получены". Реплика с места: "А то, что мы сейчас услышим, тоже устареет через полтора года?" Докладчик продолжает, но уже без прежнего подъема…

В космофизике действительно результаты устаревают довольно быстро. Техника наземных наблюдений становится все лучше и дает возможность уже сейчас вести непрерывное слежение за космосом, спутники и ракеты загружаются все большим количеством приборов, позволяющих проводить комплексные исследования. Хотя прямое изучение околоземного пространства продолжается не так давно, многие работы первооткрывателей, которые лишь прощупывали космос, из-за своей отрывочности уже превратились просто в исторические документы. Наверное, так же разом теряли свою научную ценность отчеты географов-первопроходцев, как только по их следам проходила армия топографов.

На этом фоне кажется удивительной судьба одной концепции, которая была выдвинута в 1961 году, в самом начале космической эры, она легко и изящно предсказывала важнейшие явления в околоземном пространстве, впо-следствие действительно открытые, послужила отправной точкой множества исследований. И все 20 с лишним лет носит скромное название гипотезы.

Первые попытки ее опровергнуть были предприняты, по существу, всего лишь несколько лет назад. Эти попытки носят пока еще частный характер, выводы разных критиков не согласуются между собой. Но даже те, кто в чем-то с ней не согласен, широко используют ее как наглядную схему, позволяющую связать воедино, держать в памяти, обсуждать многообразные сведения о магнитосфере. Эту гипотезу выдвинул английский астрофизик Данжи.

При упоминании этого имени космофизики разных школ и направлений ведут себя очень похоже. Скажут: "Да… Данжи…" — и задумаются. У кого на лице восхищение ("Надо же так: одно наглядное соображение, показ, так сказать, на пальцах, и такие далеко идущие выводы, причем опыт подтверждает их!"); у кого удивление ("Почему так получается, как может простенькая исходная посылка развернуться в описание таких разнообразных явлений?"); у кого стыдливость ("До сих пор наука не нашла чем заменить или как отменить этот показ на пальцах!").

Гипотеза Данжи — ключ к пониманию физики магнитосферы, и с ней стоит познакомиться.

Физические законы выражаются уравнениями. Но, по словам английского гидромеханика Моффата, "основные уравнения физики могут содержать все сведения о мире, но эти уравнения скрытны и неохотно отдают заключенные в них сведения". Кажется невозможно ни в чем разобраться, не прибегая к сложным математическим формулам. "Однако в основе любой физической теории лежат не формулы, а идеи", — это свидетельство А. Эйнштейна. Концепция Данжи — именно идея. Ее может воспринять Даже неспециалист. Мне хочется представить ее читателю от начала до конца еще и потому, что это редкий случай дать некосмофизикам точную научную информацию, так сказать, без деформации.

Данжи стал рассматривать вещество, заполняющее околоземное пространство, как сплошную среду с некоторым электрическим сопротивлением.

— Позвольте, — непременно прервет меня здесь читатель, — какая среда в магнитосферу? Когда столько толковали о радиационных поясах, говорили о невзаимодействующих частицах. А теперь оказалось, что магнитосфера заполнена средой. Понятно, что космос — не абсолютная пустота, какие-то частицы там есть, но частицы, летающие каждая сама по себе, и среда, которая движется как единое целое, — это совсем не одно и то же!

Действительно, с этим не все гладко. Даже если учесть, что космос в основном заполнен заряженными частицами (а такие частицы оказывают друг на друга электрическое и магнитное воздействия на огромных по сравнению с их размерами расстояниях), остается вопрос: насколько все же сильны эти воздействия? Увы! Непосредственно измерить их с борта космического корабля практически невозможно, поскольку его приборы не дают нам достаточно подробной информации о частицах, удаленных от корабля.

Остается обратиться к теории. А там пока тоже нет ответа…

Кто-то сказал, что если физика-теоретика просят дать математическое описание стола, то он очень быстро находит решение для случая стола без ножек и для случая стола с бесконечным числом ножек, а потом долго и безуспешно бьется над задачей о столе с четырьмя ножками.

Эту шутку вполне можно отнести и к теоретикам-космофизикам.

Плазма магнитосферы очень разрежена, но не настолько, чтобы частицы можно было считать невзаимодействующими друг с другом. Математические методы описания такой плазмы еще не разработаны. Поэтому теоретикам приходится подбираться, так сказать, с одного из двух противоположных концов: либо рассматривать ее как состоящую из отдельных, прямо не связанных между собою частиц (вот он, стол без ножек), либо, наоборот, как некую сплошную среду вроде жидкости, в которой "индивидуальность", то есть положение, скорость и прочее, каждой частицы вообще не выделяется (стол с бесконечным числом ножек). Какой из этих двух противоположных подходов лучше для описания данного явления, выясняется часто лишь на конечном этапе теоретического исследования, при сравнении результата расчета и наблюдений. Например, мы уже видели, что с помощью "одночастичного" подхода можно понять природу радиационных поясов Земли. Как мы увидим сейчас, другой способ описания реальной плазмы, который уподобляет ее проводящей жидкости, позволяет составить представление о важнейших глобальных процессах в космосе.

Почему авроральный овал то стягивается к магнитному полюсу, то, наоборот, растягивается, сползая в более низкие широты? Почему сияния в овале то слабые, малозаметные, то мощные и яркие? Довольно часто отдельные формы сияний плывут как целое по небу. Куда плывут они и почему? Ясно, что все зависит от космической обстановки. Что же определяет эту обстановку? Гипотеза Данжи дает на эти вопросы однозначный и неожиданный ответ.

Итак, представим себе, что мы имеем дело с текучим проводником (жидким или газообразным; и то и другое физики для краткости называют "жидким" проводником). Когда по такому проводнику идет ток, то движение его, равно как и распределение магнитного поля в нем, может оказаться очень сложным: ведь это движение проводника в магнитном поле, и наш проводник выступает одновременно и в роли электромотора, и в роли генератора тока. В земных установках (электромоторах и динамо-машинах) все гораздо проще. Мы заранее знаем, будет ли наше устройство работать как мотор или как генератор. Иными словами, всегда можем судить, что первично, что вторично: будет ли ток заставлять двигаться якорь с обмоткой или движение будет создавать ток.

Но плазма, наша "жидкость", — это сплошная аморфная масса, в которой одна часть "неучтенным" образом влияет на другую.

Казалось бы, разобраться в поведении такого проводника очень трудно. Однако дело сильно упрощается, если сопротивление проводника настолько мало, что проводник можно считать идеальным. Внутри такого проводника электродвижущая сила должна, очевидно, отсутствовать, иначе По проводнику шел бы бесконечно большой ток, чего в природе не бывает даже в сверхпроводниках. Из школьного курса физики мы знаем, что электродвижущая сила не возникает, когда нет движения проводника поперек магнитного поля. Это означает, что в идеальном проводнике движение и магнитное поле автоматически так согласуются друг с. другом, что в процессе движения нет перемещения вещества поперек магнитного поля: совершая свое даже сложное движение, проводящее вещество не пересекает его силовые линии. Если бы мы в некоторый момент подкрасили такой жидкий проводник вдоль какой-либо одной силовой линии, то потом, наблюдая, за течением, мы бы увидели, что подкрашенная линия в потоке движется и изгибается. Но стоит поместить маленькую магнитную стрелку в любую точку подкрашенной жидкости, как эта магнитная стрелочка тут же повернется и встанет в направлении подкрашенной линии. Наша подкрашенная линия, как бы ее ни изогнул поток, продолжает оставаться силовой линией! (Конечно, в реальном жидком хорошем проводнике стрелочка, помещенная на подкрашенную линию, уже не будет указывать точно ее направление, отклонение от него будет тем значительнее, чем меньше взятый нами проводник похож на идеальный.) Таким образом, силовые линии остаются как бы вклеенными в идеальный проводник и движутся вместе с ним подобно ниткам, попавшим в густой текучий клейстер. Физики называют эту согласованность с движением "вмороженностью" силовых линий, хотя сказать "вклеенность" было бы точнее. Опираясь на это свойство идеальных проводников (его можно выявить и на основе точных уравнений физики), удается просто и наглядно расшифровать по движению вещества характер магнитного поля в нем и, наоборот, по виду силовых линий магнитного поля в жидком проводнике сказать, каким будет движение этого проводника.


Перейти на страницу:
Изменить размер шрифта: