Но Большой взрыв происходит там, где ложный вакуум превращается в обычный. В целом же инфляция продолжается, пространство «раздувается», и родившаяся Вселенная оказывается погружена в этот безудержно расширяющийся (инфлиру-ющий, как говорят космологи) ложный вакуум. В другой его точке тоже происходит фазовый переход нестабильного вакуума в обычный, и наблюдается ещеодин Большой взрыв, рождается еще одна вселенная. И в третьей точке, четвертой, пятой… миллионной… Рождается огромное (возможно, бесконечное!) количество вселенных, и каждая из них живет по своим физическим законам («хаотическая инфляция», по Линде). Одни вселенные существуют доли секунды и «схлопываются», поскольку плотность массы оказывается слишком большой. Другие живут бесконечно долго, если плотность массы в них мала. Новорожденные вселенные состоят из обычной материи, которая не может перемещаться быстрее света. А ложный вакуум, куда эти вселенные погружены, продолжает «раздуваться», пространство между вселенными увеличивается со сверхсветовой скоростью, и, значит, рожденные вселенные очень быстро удаляются друг от друга на такие огромные расстояния, что всякие контакты между ними становятся невозможны.
Теория инфляции легко и естественно разрешила проблему плоской Вселенной. Если Большому взрыву предшествовала инфляция, то нынешняя Вселенная просто обязана быть плоской! Даже если в самом начале инфляции пространство и было «закрытым» или «открытым», то в процессе инфляции оно расширилось в огромное число раз. Когда в ложном вакууме произошел фазовый переходи случился Большой взрыв, пространство было уже плоским, как становится (выглядит!) практически плоской поверхность во много раз раздутого воздушного шара.
Правда, в реальности, как обычно, все сложнее и интереснее! В восьмидесятые годы прошлого века техника астрофизических наблюдений позволила наконец достаточно надежно определить плотность видимого вещества во Вселенной. К разочарованию космологов, оказалось, что плотность эта слишком мала, всего лишь около процента от критической, предсказанной теорией инфляции.
Разочарование, впрочем, продолжалось недолго. В те же восьмидесятые годы удалось достаточно точно измерить массы галактик (по скорости их вращения и светимости), и заново измеренные массы оказались на порядок больше тех, что получались прежде (только по величине светимости). Наблюдения показывали, что в галактиках присутствует невидимая масса, проявляющая себя лишь своим полем тяжести. И масса эта (ее назвали темным веществом) гораздо больше массы всех видимых в телескопы объектов. Значит, космологи могут расслабиться: проблема решена, и Вселенная все-таки плоская?
Не совсем. Если сложить видимую массу с невидимой, то общая плотность вещества во Вселенной получалась все равно примерно втрое меньше критической! Может, неправильно определили величину невидимой массы? Нет, точность наблюдений в последние годы прошлого века была уже достаточна, чтобы подобная ошибка выглядела невозможной. И опять, казалось бы, инфляционная теория «повисла на волоске»: она предсказывала практически плоскую Вселенную, а наблюдения свидетельствовали, что Вселенная втрое менее массивна и, следовательно, подчиняется неевклидовой геометрии Лобачевского. Зачем тогда нужна инфляция?
Спасла теорию идея, которую выдвинул еще Эйнштейн ровно сто лет назад - в 1917 году. Идея, от которой Эйнштейн впоследствии отказался, назвав ее «величайшей ошибкой». Об этой идее физики забыли надолго, но через три четверти века вспомнили, когда космологи попытались все-таки совместить теорию инфляции с наблюдениями, когда они старались найти во Вселенной что-нибудь, что сделало бы ее плоской. И нашли. Вакуум, в котором разбегаются галактики, тоже обладает энергией, а следовательно, массой! Более того, плотность энергии (и массы!) вакуума, согласно эйнштейновским уравнениям, одна и та же в любой точке и не меняется при расширении Вселенной. Именно об этом писал Эйнштейн в 1917 году. Он был сторонником идеи статичной и вечной Вселенной, а из уравнений получалось, что Вселенная статичной быть не может - она должна или расширяться, или сжиматься. Тогда Эйнштейн ввел в уравнения постоянную величину- космологический член, потому что хотел получить такое решение уравнений, при котором Вселенная была бы стабильной и неподвижной. Когда Эдвин Хаббл в 1929 году доказал, что Вселенная расширяется, Эйнштейн исключил космологический член из уравнения, но много лет спустя оказалось, что сделал он это напрасно. Космологический член (или, как сейчас говорят, космологическая постоянная) как раз и описывал скрытую энергию вакуума, ту самую, которая вносит вклад в общую плотность материи во Вселенной.
Темная энергия расталкивает Вселенную, заставляет ее расширяться быстрее.
Теоретически все прекрасно сошлось: по современным данным, всего лишь 4% массы Вселенной составляет видимое в телескопы вещество (галактики, звезды, плазма, пыль, газ), еще 22% - невидимое вещество, проявляющее себя только полем тяжести. Возможно, это какие-то неизвестные пока науке элементарные частицы. А остальная масса (74%) приходится на неизвестное поле, обладающее огромной энергией (ее назвали темной), равномерно распределенной по всему объему видимой Вселенной.
Карта флуктуации микроволнового фона по данным спутника WMAP .
Плотность вещества (обычного и темного) при расширении Вселенной, естественно, уменьшается, но плотность темной энергии остается неизменной в любой точке и в любой момент времени, начиная с Большого взрыва.
Отсюда следует очень любопытная и важная вещь. Сейчас плотность темной энергии больше, чем плотность вещества (обычного и темного): соответственно 74 и 26%. В прошлом было наоборот. А это, в свою очередь, означает, что в былые времена силы притяжения во Вселенной преобладали над силами отталкивания и расширение замедлялось. Но в какой-то момент силы отталкивания стали больше сил притяжения и Вселенная стала разгоняться, как автомобиль на трассе.
Когда в 1995 году Лоуренс Краусс и Майкл Тернер высказали эту идею, коллеги восприняли ее скептически, но не прошло и трех лет, как сразу две группы астрофизиков (в рамках проектов Supernova Cosmology Project и High-Z Supernova) опубликовали результаты своих наблюдений, из которых следовало: примерно пять миллиардов лет после Большого взрыва Вселенная расширялась, постепенно замедляясь, а затем начался период ускоренного расширения, который продолжается до сих пор. Вывод этот астрофизики сделали, наблюдая за многочисленными вспышками внегалактических сверхновых, находящихся на самых разных расстояниях - от ближайших окрестностей Млечного Пути вплоть чуть ли не до самого «горизонта». Речь идет о сверхновых типа la - они отличаются от прочих сверхновых тем, что в максимуме имеют одинаковую светимость и их можно использовать в качестве «стандартных свечей», по которым с хорошей точностью определять расстояния до самых далеких объектов Вселенной.
Самое странное и необычное предсказание инфляционной теории было подтверждено наблюдениями!
В те же годы подтвердилось и другое предсказание. В инфляционной теории ложный вакуум - то ничто, из которого возникла Вселенная, - чрезвычайно однороден. Однако и в самой однородной «пустоте», если верны квантовые законы (а еще не обнаружено ни одного случая, когда эти законы нарушались бы!), неизбежно возникают флуктуации, поскольку действует принцип неопределенности. Флуктуации должны были возникать и в ложном вакууме, а инфляция эти флуктуации растянула в пространстве. Большой взрыв закрепил флуктуации в виде незначительной разницы в плотности и температуре возникшего вещества. Если теория верна, то сейчас первичные флуктуации должны проявлять себя как слабые вариации температуры и яркости реликтового микроволнового излучения. Более того, теория инфляции позволяет рассчитать величину флуктуации, и, следовательно, их можно попытаться обнаружить в реально наблюдаемом микроволновом фоне.