Пользуясь моделью растекания льда в покровном леднике как твердого тела совершенной пластичности, Вертман рассчитывает пределы растекания и сокращения ледника в соответствии с колебаниями инсоляции. Его расчетный ледник растекается на юг и на север. На северном крае он стекает в море, обламываясь айсбергами, а на южном стаивает. Стаивание на южном крае равно расходу на айсберги на северном.

Расчеты Вертмана по принятой им модели покровного ледника хотя и не настолько точны, чтобы прогнозировать будущее наступание ледников по предвычисленному ходу инсоляции, все же очень интересны. Они показывают, что колебания климата и оледенения, возникшие в определенных географических условиях, сложившихся к началу четвертичного периода, связаны с колебаниями инсоляции, но последние действуют не непосредственно, не сами по себе, а лишь через оледенение. Не будь ледников, климатическое влияние изменений инсоляции было бы малозаметным.

Системный анализ колебаний оледенения и климата. Ледниковая теория (или теория колебаний оледенения и климата) развивается также и в связи с успехами прикладной математики и вычислительной техники, с применением быстродействующих электронных вычислительных машин (ЭВМ). Методы теории систем управления позволили составить математическую модель динамики системы «Земная поверхность — Атмосфера», т. е. показать изменения в этой системе, вызванные взаимодействиями внутри нее.

На первых этапах исследования математическое моделирование подтвердило возможность автоколебаний в системе без какого-либо участия внешних воздействий, было так же показано, что последние лишь изменяют продолжительность циклов и амплитуду колебаний[46]. В дальнейшем в ходе исследований, проводившихся в Тихоокеанском институте географии Дальневосточного научного центра АН СССР во Владивостоке, было проведено моделирование системы с учетом реально существующих внешних воздействий — колебаний инсоляции и повышения суши[47].

Рассматриваемая система — атмосфера с подстилающей ее земной поверхностью — включает ледники, морские льды, океан и сушу. Климатическое значение суши в этой системе относительно невелико из-за небольшой ее теплоемкости и средней величины альбедо. Наибольшим альбедо обладает снег, отражающий 80 % падающей солнечной энергии, а наименьшим — вода, альбедо которой не превышает 10 %. Поэтому снег и лед нагреваются солнечными лучами очень мало. Наибольшим аккумулятором тепла является океан. Альбедо суши — 20–30 %.

Систему «Земная поверхность — Атмосфера» будем в дальнейшем называть, следуя Сергиным, системой «Ледники — Океан — Атмосфера». Первые два ее звена обладают большой тепловой инерцией, что оказывается очень важным для динамики всей системы. Вода имеет самую большую теплоемкость — 1 кал/г на 1 °C, она медленно нагревается и также медленно остывает. Ледники — холодильники планеты; на таяние 1 г льда нужно затратить 80 кал тепла, и пока лед не растаял, температура талой воды не поднимается выше 0 °C, а масса покровных ледников огромна (вспомним, что она равна 60—80-метровому слою воды, разлитому равномерно по поверхности Мирового океана, — 360 млн. км2). Через атмосферу же происходит основной обмен теплом.

Пользуясь методами теории систем управления, была составлена функциональная схема системы «Ледники — Океан — Атмосфера». Эта схема дает понятие о замкнутой цепи взаимосвязей, возникающих под действием постоянного источника энергии вне системы — солнечного тепла. Она затем заменяется так называемой операторной схемой, в которой для каждой связи между величинами подбирается математическая зависимость. Их совокупность представляет собой систему дифференциальных уравнений, решение которой в численном виде производится на ЭВМ; Полученный результат показывает ход изменений во времени всех входящих в систему величин.

Ледяные лишаи i_009.png

Функциональная схема системы «Ледники — Океан — Атмосфера» (по В. Я. и С. Я. Сергиным)

Схема показывает, как влияют друг на друга учитываемые ею величины. Например, испарение зависит от температуры и интенсивности атмосферной циркуляции. Испарение, в свою очередь, определяет осадки и облачность, которые, изменяясь, влияют на температуру через изменение притока к земной поверхности солнечной энергии, и т. д.

Операторные схемы были составлены отдельно для северного и южного полушарий, а затем соединены в общую схему для всего земного шара. Раздельный их анализ показал, что в то время как для северного полушария взаимодействия в системе приводят к автоколебаниям, для южного полушария устанавливается стационарный (или апериодический) режим. Рост покровного оледенения на полярном материке автоколебаний не вызывает (Антарктический ледяной лишай — лишай локализованный стационарный, по Гернету). Автоколебания в системе для Земли в целом обеспечиваются за счет северного полушария, где разрастались покровные ледники собственно-материкового типа. В глобальную операторную схему были включены и внешние воздействия — колебания инсоляции и повышение суши. В результате был получен ход колебаний во времени объема ледников в северном и южном полушариях, средней годовой температуры для полушарий и других величин, характеризующих изменения климата.

Смоделированный ход колебаний гляциоклиматических характеристик не претендует на близкое совпадение с действительным ходом соответствующих величин. Модель системы «Ледники — Океан — Атмосфера» пока еще несовершенна. Но все же полученные с ее помощью результаты весьма интересны. Из взаимодействующих между собой в природной системе сил и достоверно установленных внешних влияний ход изменений оказался в общих чертах подобным тому, каким он представляется (по доступным науке данным) за последние несколько сотен тысяч лет.

Продолжительность циклов (от максимума или минимума предыдущего оледенения до максимума или минимума последующего) в модели имеет тот же порядок (от 40 до 80 тыс. лет, чаще 50–70 тыс. лет), какой известен по палеогеографическим данным. Так же сходны по порядку величин амплитуды колебаний. Отклонения температуры в сторону похолодания (в ледниковья) больше, чем в сторону потепления. (Мы живем в одно из межледниковий, и современная температура лишь немногим ниже, чем она была в самые теплые стадии.) В северном полушарии амплитуда температуры в два с лишним раза больше, чем в южном (до 20° против 8°), в соответствии с большими здесь колебаниями объема льдов (от 2 до 20 и более млн. км3, т. е. более чем в 10 раз, против 20–30 млн. км3, т. е. менее чем в 2 раза, в южном полушарии). Колебания температуры в обоих полушариях синхронны и определяются главным образом событиями в северном полушарии. Синхронно с колебаниями объема льдов изменяется и разность значений температуры между экватором и полюсом: она увеличивается в ледниковья и уменьшается в межледниковья. Колебания уровня Мирового океана также соответствуют колебаниям оледенения в северном полушарии. Уровень моря показывает тенденцию к неуклонному понижению в связи с продолжающимся и в плейстоцене повышением суши.

Ледяные лишаи i_010.png

Колебания климата и оледенения, полученные В. Я. и С. Я. Сергиными при математическом моделировании динамики системы «Ледники — Океан — Атмосфера», 1978 г.

Средняя температура (°С) северного полушария — tс; средняя температура (°С) южного полушария — tю; объем ледников (в млн. км3) в северном полушарии — Vс; объем ледников (в млн. км3) в южном полушарии — Vю; уровень океана (в м) — h. Все величины приведены в отклонениях от современных. Начало шкалы времени условное, т. е. за начало отсчета времени принят какой-то произвольный момент в прошлом. Колебания уровня океана происходят на фоне неуклонного его понижения, что объясняется повышением суши, продолжающимся с третичного времени. Помимо внутренних взаимодействий, моделирование учитывает и внешние влияния — колебания инсоляции по астрономическим причинам и повышение суши тектоническими силами, обусловленными процессами в недрах Земли.

вернуться

46

См.: Сергин С. Я., Сергин В. Я. Земная поверхность — Атмосфера как система автоматического регулирования. — Докл. АН СССР, 1966, т. 171, № 4; Они же. Как возникали оледенения Земли. — Природа, 1969, № 9.

вернуться

47

См.: Сергин В. Я., Сергин С. Я. Системный анализ проблемы больших колебаний климата и оледенения Земли. Л.: Гидрометеоиздат, 1978. 279 с.


Перейти на страницу:
Изменить размер шрифта: