3. нервный центр, в который входят один или несколько вставочных нейронов;
4. эфферентное нервное волокно (аксон эфферентного нейрона), по которому возбуждение направляется к органу.
В рефлекторной реакции всегда участвуют афферентные нейроны, передающие импульсы от рецепторов (например, проприорецепторов) исполнительного органа в ЦНС. С помощью обратной афферентации происходит коррекция ответной реакции нервными центрами, регулирующими данную функцию. Поэтому понятие «рефлекторная дуга» заменяется в настоящее время представлением о рефлекторном кольце, поскольку в функциональном отношении дуга замкнута и на периферии, и в центре беспрерывно циркулирующими во время работы органа нервными сигналами.
Простейшая рефлекторная дуга (моносинаптическая) состоит из двух нейронов: чувствительного и двигательного. Примером такого рефлекса является коленный рефлекс. Большинство рефлексов включают один или несколько последовательно связанных вставочных нейронов и называются полисинаптическими. Наиболее элементарной полисинаптической дугой является трехнейронная рефлекторная дуга, состоящая из чувствительного, вставочного и эфферентного нейронов. В осуществлении пищевых, дыхательных, сосудодвигательных рефлексов участвуют нейроны, расположенные на разных уровнях – в спинном, продолговатом, среднем и промежуточном мозге, в коре головного мозга.
Рефлексы возникают под влиянием специфических для них раздражителей, действующих на их рецептивное поле. Рецептивным полем рефлекса называется участок тела, содержащий рецепторы, раздражение которых всегда вызывает данную рефлекторную реакцию. Так, рефлекс сужения зрачка возникает при освещении сетчатки глаза, разгибание голени наступает при нанесении легкого удара по сухожилию ниже колена и т. д.
Нервные центры
Нервным центром называется функциональное объединение нейронов, обеспечивающее осуществление какого-либо рефлекса или регуляцию какой-либо определенной функции. Нейроны, входящие в нервный центр, обычно находятся в одном отделе ЦНС, но могут располагаться и в нескольких. Центр дыхания располагается в средней трети продолговатого мозга, центр мочеиспускания – в крестцовом, центр коленного рефлекса – в поясничном отделе спинного мозга. В осуществлении сложных рефлексов целостного организма принимают участие, как правило, не один, а многие центры, расположенные в разных отделах мозга, включая его высшие отделы. Например, в акте дыхания участвует не только центр дыхания в продолговатом мозге, но и нервные клетки варолиева моста, коры головного мозга и мотонейроны спинного мозга.
Особенности распространения возбуждения в ЦНС в основном определяются свойствами нервных центров:
1. Одностороннее проведение возбуждения. В ЦНС возбуждение может распространяться только в одном направлении: от рецепторного нейрона через вставочный к эфферентному нейрону, что обусловлено наличием синапсов.
2. Более медленное проведение возбуждения по сравнению с нервными волокнами. Промежуток времени от момента нанесения раздражения на рецептор до ответной реакции исполнительного органа называется временем рефлекса. Большая его часть тратится на проведение возбуждения в нервных центрах, где возбуждение проходит через синапсы. На выделение и диффузию медиатора в синапсе требуется промежуток времени в 1,5–2 мс (синоптическая задержка). Чем больше нейронов в рефлекторной дуге, тем продолжительнее время рефлекса.
3. Суммация возбуждений (или торможения). Нервные центры могут суммировать афферентные импульсы, что проявляется в усилении рефлекса при увеличении частоты раздражений или числа раздражаемых рецепторов. Различают два вида суммации: временная суммация – если импульсы приходят к нейрону по одному и тому же пути через один синапс с коротким интервалом, то происходит суммирование ВПСП на постсииаптической мембране и она деполяризуется до уровня, достаточного для генерации ПД; пространственная суммация связана с суммированием ВПСП, возникающих одновременно в разных синапсах одного нейрона. Оба вида суммации происходят в области аксонного холмика, где и генерируется ПД.
4. Конвергенция. В нервном центре несколько клеток могут передавать импульсы к одному нейрону, т. е. возбуждения конвергируют на нем. Конвергенция может быть результатом прихода возбуждающих или тормозных входных сигналов от различных источников. Так, моторные нейроны спинного мозга могут получать импульсы: от периферических нервных волокон, входящих в спинной мозг; волокон, соединяющих сегменты спинного мозга; кортикоспинальных волокон от коры мозга; тормозных путей от ретикулярной формации. В результате конвергенции происходит суммация импульсов от этих источников и возникает ответ, являющийся суммарным эффектом разнородной информации.
5. Дивергенция и иррадиация. Возбуждение даже единственного нервного волокна, по которому импульсы поступают в нервный центр, может послужить причиной возбуждения множества выходящих из центра нервных волокон. Морфологическим субстратом широкого распространения импульсов (иррадиации) возбуждения является ветвление аксонов и наличие большого числа вставочных нейронов в пределах центра.
6. Облегчение и окклюзия. На нейронах нервных центров оканчиваются не только волокна их собственных афферентных входов. Каждый из них получает веточки от афферентов соседнего центра, что может обусловливать развитие окклюзии (закупорки) или, наоборот, облегчения.
Феномен окклюзии состоит в том, что количество возбужденных нейронов при одновременном раздражении афферентных входов обоих нервных центров оказывается меньше, чем арифметическая сумма возбужденных нейронов при раздельном раздражении каждого афферентного входа в отдельности. Явление окклюзии приводит к снижению силы суммарной ответной реакции. Феномен центрального облегчения характеризуется противоположным эффектом. На облегчении основано проторение пути – распространение возбуждения не по той цепи нейронов, по которой информация не поступала ранее, а через нейроны, уже облегченные первым раздражением.
7. Трансформация ритма возбуждений. Если сопоставить частоту импульсов в задних (чувствительных) и передних (двигательных) корешках спинного мозга при раздражении рецепторов, то обычно их ритм не совпадает. Центры способны как снижать, так и повышать ритмы возбуждений, поступающих от рецепторов.
8. Рефлекторное последействие. Продолжительность рефлекса всегда больше, чем время раздражения, так как возбуждение в нервных центрах сохраняется в течение некоторого времени после прекращения действия раздражителя. Это объясняется тем, что вставочные нейроны в центре образуют замкнутые цепи («нейронные ловушки»), по которым ПД могут длительно циркулировать.
9. Высокая чувствительность к недостатку кислорода. Уменьшение доставки к клеткам мозга кислорода быстро ведет к тяжелым расстройствам деятельности ЦНС и гибели нейронов. Кратковременное нарушение кровоснабжения мозга вследствие временного спазма его сосудов или падения давления крови приводит к потере сознания – обмороку. Своевременно принятые меры по восстановлению кровоснабжения мозга (нашатырный спирт, кофеин, горизонтальное положение тела и др.) выводят больного из обморока.
10. Высокая чувствительность к химическим веществам объясняется большим числом синапсов. На одном нейроне могут рас-полагаться синапсы, обладающие чувствительностью к различным химическим веществам. Подбирая фармакологические препараты, которые избирательно блокируют одни синапсы, оставляя другие в рабочем состоянии, можно корректировать реакции организма.
11. Низкая функциональная подвижность (лабильность) и высокая утомляемость. Нервные центры, как и синапсы, обладают низкой функциональной подвижностью и быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми и имеют высокую лабильность.