Для наглядности добавим, что акустические излучатели типа LELFAS имеют длину около 3 м и внешне похожи на небольшие торпеды. Кстати, их можно выстреливать с помощью стандартного торпедного аппарата, а рассчитаны они на непрерывную работу в течение 30 суток.

Одна подлодка, имеющая на борту четыре комплекта антенн быстрого развертывания, способна перекрыть площадь более 2500 квадратных миль. А группа из трех кораблей, развернув подобную систему, а также имея на борту буксируемые излучатели для подсветки целей и противолодочные вертолеты, может в течение длительного времени контролировать акваторию общей площадью более 30 000 квадратных миль. И ни одна сколько-нибудь крупная подводная цель не останется в этом квадрате незамеченной.

Маскировка в рыбьем косяке

Что же теперь — подводному флоту становится на прикол? Не скажите… Есть свои недостатки и у СОПО. Они способны эффективно работать лишь в том случае, если целей в районе относительно немного и они сами довольно крупных размеров. Но как отследить перемещение, скажем, обитателей целого рыбьего косяка, если рыбы, его составляющие, вдруг кинутся в разные стороны?

Между тем, именно так будут действовать, по прогнозам экспертов, подлодки в ближайшем будущем. К району, интересующему командование, будет послана большая подлодка-матка. Не приближаясь особо близко к кораблям противника, она выпустит с десяток автоматических субмарин поменьше. А те, словно матрешки, будут содержать в себе другие, еще меньшие субмарины-роботы, предназначенные для выполнения самых разных задач — от разведки до нанесения минно-торпедных ударов. И никакая СОПО пока не способна обнаружить подводные аппараты величиной с рыбу среднего размера, да еще закамуфлированную, скажем, под тунца. Так что остается пока гадать, какие средства противодействия будут придуманы против них.

Публикацию подготовил С. РЫБАКОВ

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Энергетика на уровне молекул

Для плеера или мобильного телефона нужны аккумуляторы. А какими должны быть источники питания для наноприборов, размеры которых в сотни и тысячи раз меньше? Одним из первых над подобным вопросом задумался Чжун Линь Ван — директор Центра исследования наноструктур Технологического института штата Джорджия.

Он отнюдь не новичок в наномире. В 1998 году он создал самые маленькие в мире нановесы, а в 2000 году — наноленты, о которых пойдет речь ниже.

«Сегодня мы начинаем создавать чрезвычайно малые устройства отбора энергии для мира наномасштабных систем, где размеры исчисляются миллиардными долями метра, — рассказал профессор Чжун Линь Ван. — Мы называем эти устройства наногенераторами и нанобатарейками. Поскольку наноустройства требуют очень мало энергии, то можно подумать и о таких наноисточниках, которые не потребуют периодической замены или подзарядки»…

Такие источники весьма пригодились бы, например, во вживляемых наносенсорах для непрерывного контроля уровня сахара в крови пациента-диабетика, в автономных датчиках, измеряющих механические напряжения в пролетах мостов и мачтах электропередачи или датчиках содержания токсичных веществ в воде и воздухе.

Подобные же источники энергии необходимы и для нанороботов, микроэлектромеханических систем (МЭМС) и во многих других случаях. И вот когда исследователи всерьез задумались над проблемой, выяснилось, что вокруг нас довольно много «бесплатных» источников энергии. Взять хотя бы нас с вами.

Юный техник, 2010 № 05 _15.jpg

Исследователь Чжун Линь Ван.

Человеческое тело постоянно нагрето до температуры 36,6 градуса Цельсия, что обычно на десятки градусов превышает температуру окружающей среды. Стало быть, наручные часы, те же вживляемые датчики, кардиостимуляторы, в принципе, могут работать на разности температур; нужно лишь использовать соответствующие термопары.

Датчики напряжений мачт электропередачи могут использовать в качестве источника питания случайные вибрации самой конструкции. Датчики движения на дорогах — колебания почвы от проезжающих автомобилей. Метеодатчики — разность температур грунта на поверхности и в глубине (температура грунта на глубине нескольких метров почти постоянна). Есть также предложения использовать в качестве источников энергии городской шум или звуки волн прибоя.

В конце 90-х годов прошлого века стали появляться и первые экзотические источники питания. Скажем, экспериментаторы Массачусетского технологического института разработали обувь на основе пьезоэлектрического эффекта. Человек шагает по улице и одновременно подзаряжает свой мобильник.

Еще один вариант — создание пьезоэлектрического вибрационного микрогенератора. В нем используется двухслойная консоль из цирконата-титаната свинца с грузиком на свободном конце, напоминающим ныряльщика на краю трамплина. При сотрясениях грузик раскачивается. При этом, когда консоль изгибается вниз, верхний пьезоэлектрический слой испытывает деформацию растяжения, а нижний — сжатия. В результате один слой получает положительный потенциал, а другой — отрицательный. При изгибе вверх процессы идут с противоположными знаками. А в итоге при колебании массы генерируется переменное напряжение.

Можно также использовать миниатюрные генераторы, главным элементом которых будет подвижный магнит или катушка. Подрагивая на пружине, такой индуктор опять-таки генерирует переменное электрическое напряжение.

Однако с уменьшением размеров подобных конструкций они работают все хуже. Грузик весом в микрограммы уже не столь подвержен воздействию сил гравитации, как, скажем, массивная гиря. Поэтому для создания наномасштабного генератора для питания автономных устройств необходим особый подход. Тогда профессор Чжун Линь Ван предложил использовать наноленты и нанопроволочки, которые получают путем спекания оксидов таких металлов, как цинк, при температурах от 900 до 1200 °C в особой инертной атмосфере.

При тщательном изучении оказалось, что нанопроволочки из оксида цинка представляют собой совершенные кристаллы в форме шестигранной призмы. И когда такие проволочки диаметром от 30 до 100 нм и длиной от 1 до 3 мкм изгибаются под действием внешних причин — случайных вибраций, сотрясений воздуха, — они, словно обычные пьезоэлементы, вырабатывают микроток.

Как мы уже говорили, не обходят вниманием исследователи и термоэлектрические генераторы, работа которых основана на использовании эффекта Зеебека; электродвижущая сила (ЭДС) возникает в контуре, состоящем из двух разнородных проводников, контакты между которыми имеют разные температуры. Эта ЭДС пропорциональна разности температур между местами контакта проводников. Основанные на этом принципе термопары широко применяют для измерения температур, а теперь могут использоваться и в качестве наноисточников энергии.

Юный техник, 2010 № 05 _16.jpg

А. Нанобатарейка из микроволокон оксида цинка.

Юный техник, 2010 № 05 _17.jpg_0

В. Схема нанобатарейки.

Юный техник, 2010 № 05 _18.jpg

С. График напряжения в милливольтах.

Наконец, весьма интересным для исследователей оказался тот факт, что ряд не являющихся электроактивными в обычном состоянии материалов начинает проявлять неожиданные свойства при переходе к наноразмерам.

Так, скажем, оксид титана в обычном состоянии имеет весьма незначительное количество ионов лития при комнатной температуре. Однако при переходе в наносостояние ситуация изменяется кардинальным образом. При размере частиц около 15 нм наноструктурированный оксид титана можно использовать в качестве отрицательного электрода в литий-ионных аккумуляторах!


Перейти на страницу:
Изменить размер шрифта: